Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thảo My
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Cô Hoàng Huyền
8 tháng 5 2017 lúc 11:35

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h

a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))

Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)

b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)

Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)

c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))

Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)

Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\) 

d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)

Để  \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)

Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)

Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)

mynameisbro
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2023 lúc 10:57

loading...  loading...  loading...  

Chu Minh Hiếu
Xem chi tiết
Florence Brittany
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 2022 lúc 21:27

1c (2 câu kia em tự giải)

Kẻ đường cao AH \(\Rightarrow\) AH cố định

Do \(\widehat{MAF}\) và \(\widehat{MCF}\) cùng nhìn MF dưới 1 góc vuông nên tứ giác MAFC nội tiếp

\(\Rightarrow\widehat{AFM}=\widehat{ACM}\) (cùng chắn AM)

\(\Rightarrow\Delta_VFME\sim\Delta_VCAB\left(g.g\right)\) với tỉ số đồng dạng \(k=\dfrac{AM}{AH}\)

\(\Rightarrow S_{MEF}=k^2.S_{ABC}\Rightarrow S_{MEF-min}\) khi \(k_{min}\)

Mà trong tam giác vuông AHM ta có \(AH\le AM\Rightarrow k\ge1\Rightarrow k_{min}=1\) khi M trùng H

Hay diện tích MEF min khi M là chân đường cao từ A xuống BC

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 21:28

undefined

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 21:42

2.

Kẻ AG, CH song song EF (G, H cùng thuộc BD)

\(\widehat{OAG}=\widehat{OCH}\left(slt\right)\) ; OA=CO; \(\widehat{AOG}=\widehat{COH}\left(đđ\right)\Rightarrow\Delta AOG=\Delta COH\)

\(\Rightarrow OG=OH\)

Theo Talet:

\(\dfrac{BA}{BF}=\dfrac{BG}{BM}\) ; \(\dfrac{BC}{BE}=\dfrac{BH}{BM}\)

\(\Rightarrow\dfrac{BA}{BF}+\dfrac{BC}{BE}=\dfrac{BG+BH}{BM}=\dfrac{\left(BO-OG\right)+\left(BO+OH\right)}{BM}=\dfrac{2BO}{BM}=4\)

b.

Tương tự câu a, ta có: \(\dfrac{BA}{AF}+\dfrac{DA}{AK}=4\Rightarrow\dfrac{BA}{AF}+\dfrac{BC}{AK}=4\)

\(\Rightarrow8=BA\left(\dfrac{1}{BF}+\dfrac{1}{AF}\right)+BC\left(\dfrac{1}{BE}+\dfrac{1}{AK}\right)\ge\dfrac{4BA}{BF+AF}+\dfrac{4BC}{BE+AK}\)

\(\Rightarrow8\ge4+\dfrac{4BC}{BE+AK}\Rightarrow\dfrac{BC}{BE+AK}\le1\)

\(\Rightarrow BE+AK\ge BC\)

Dấu "=" xảy ra khi F là trung điểm AB

HÀ DUY KIÊN
Xem chi tiết
Ngọ Thị Hạnh
Xem chi tiết
Lee Min Ho
Xem chi tiết
Phạm Quỳnh Chi
Xem chi tiết