Cho tam giác ABC vuông tại A, phân giác BD ( D \(\in\) AC). Kẻ DM vuông góc với BC (M \(\in\) BC)
a) Chứng minh AB = BM (đã giải được)
b) So sánh các độ dài AB và AD
Câu a) mình giải được rồi, mọi người giúp mình giải câu b) nha
Cho tam giác ABC có AB bé hơn AC , kẻ tia phân giác AD (D thuộc BC) , KẺ DM vuông góc AB tại M , DN vuông góc AC tại N a) chứng minh tam giác ADM bằng tam giác ADN b) so sánh BD và CD
Cho tam giác ABC vuông tại A , Tia phân giác của góc ABC cắt AC tại điểm D . Từ D kẻ vuông góc với BC tại điểm H
a, chứng minh AD = DH
b, so sánh độ dài AD và DC
c, gọi K là giao điểm của AB và DH
BD là đường trung trực của đoạn thẳng KC
Giải giúp mình phần c với ạ 28 tháng tư cần rồi ạ
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)
Cho tam giác ABC vuông tại A có AB=9cm,AC=12cm.Tia phân giác của góc B cắt AC tại D. Kẻ DM vuông góc BC tại M.
a) Tính BC
b) Chứng minh: tam giác ABD=tam giác MBD
c) So sánh AD và DC
d) Gọi giao điểm của DM và AB là E. Kẻ BD cắt EC tại K. Gọi P,Q lần luợt là trung điểm của BC và BE, BK cắt EP tại I. Chứng minh: C,I,Q thẳng hàng.
Nhờ mn giải hộ. Quan trọng nhất là câu d nên đừng bỏ qua ạ. Ai giải được em TICK cho
a)
áp dụng định lí pi-ta-go vào tam giác vuông ABC ta có :
BC2 = AB2 + AC2
=> BC2 = 92 + 122
=> BC2 = 81 + 144
=> BC2 = 225
=> BC2 = 152
=> BC = 15
b)
Xét tam giác ABD và tam giác MBD có :
cạnh BD chung ( đề bài đã cho )
góc BAD = góc BMD = 90o ( đề bài đã cho )
góc ABD = góc MBD ( đề bài đã cho )
=> tam giác ABD = tam giác MBD
( cạnh huyền - góc nhọn )
Vậy : a) BC = 15 cm
b) tam giác ABD = tam giác MBD
chúc cậu học tốt
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC vuông tại A, có góc C = 30 độ. BD là tia phân giác góc ABC( D thuôc AC). Kẻ BH vuông góc với BC( H thuộc BC). Tia BA và tia HD cắt nhau tại K.
a) Chứng minh: AD = DH.
b) So sánh độ dài AD với CD.
c) Chứng minh D là trọng tâm của tam giác BKC.
d) Chứng minh: AD + AK > KC/2.
CÁC BẠN GIẢI GIÚP MÌNH CÂU C VÀ CÂU D NHÉ!!! CÁC BẠN KO CẦN VẼ HÌNH ĐÂU!!! AI NHANH VÀ ĐÚNG NHẤT MÌNH TICK CHO!!!
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
Cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của góc ABC, (D thuộc AC) . Kẻ DM vuông góc với BC tại M. a) Chứng minh tam giác DAB= tam giác DMP b) Chứng minh AD<AC
c) Gọi K là giao điểm của đường thẳng DM và đường thẳng AB, đường thẳng
BD cắt KC tại N. Chứng minh BN vuông góc với KC và tam giác KBC cân tại B
a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔDAB=ΔDMB
b: D nằm giữa A và C
=>AD<AC
c: Xét ΔBKC có
CA,KM là đường cao
CA cắt KM tại D
=>D là trực tâm
=>BD vuông góc KC tại N
Xet ΔBKC có
BN vừa là phân giác, vùa là đường cao
=>ΔBKC cân tại B
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B