Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc linh
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
callme_lee06
Xem chi tiết
Hoàng
Xem chi tiết
Nhan Thanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 23:04

a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)

=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)

\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)

b: \(5x^2-3x+1=2x+31\)

=>\(5x^2-3x+1-2x-31=0\)

=>\(5x^2-5x-30=0\)

=>\(x^2-x-6=0\)

=>(x-3)(x+2)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)

=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)

=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)

\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)

\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0

Do đó, phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Thị Thu Phương
30 tháng 7 2021 lúc 18:47

Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ 

Edogawa Conan
30 tháng 7 2021 lúc 18:57

1)\(\sqrt{4x^2+12x+9}=2-x\)

\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+3\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

\(\)

Edogawa Conan
30 tháng 7 2021 lúc 19:08

2)\(\sqrt{x^4+2x^2+1}=x^2+5x+4\)       ĐK:\(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x^2+1\right)^2}=x^2+5x+4\)

\(\Leftrightarrow\left|x^2+1\right|=x^2+5x+4\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+5x+4\\x^2+1=-x^2-5x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\2x^2+5x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\2\left(x+\dfrac{5}{4}\right)^2+\dfrac{15}{8}=0\left(voli\right)\end{matrix}\right.\)

   

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:35

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \) ta được

\(3{x^2} - 6x + 1 =  - 2{x^2} - 9x + 1\)

\( \Leftrightarrow 5{x^2} + 3x = 0\)

\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \) , ta được

\(2{x^2} - 3x - 5 = {x^2} - 7\)

\( \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)

 Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)