cho hai đa thức :P(x)=x^3-2ax+a^2 và Q(x)=x^2 +(3a+1)x+a^2
Cho hai đa thức:
\(f\left(x\right)=x^3-2ax+a^2\) và \(g\left(x\right)=x^4+\left(3a+1\right)x+a^2\)
Tìm a để f(1)=g(3).
Cho 2 đa thức: f(x)= x^3-2ax+a^2 và g(x)=x^4+(3a+1)*x+a^2, tìm a để f(1)=g(3)
CHo 2 đa thức P(x)=x\(^2\)-2ax+a\(^2\)và Q(x)=x\(^2\)+(3a+1).x+a\(^2\)
Tìm a sao cho P(x)=Q(x)
Để P(x) = Q(x)
Thì x2 - 2ax + a2 = x2 + (3a + 1)x + a2
=> x2 - 2ax + a2 = x2 + 3ax + x + a2
=> (x2 - 2ax + a2) - (x2 + 3ax + x + a2) = 0
=> x2 - 2ax + a2 - x2 + 3ax - x - a2 = 0
=> (x2 - x2) + (-2ax + 3ax) + (a2 - a2) - x = 0
=> ax - x = 0
=> x(a - 1) = 0
Vậy a = 1
Để \(P\left(x\right)=Q\left(x\right)\)thì \(x^2-2ax+a^2=x^2+\left(3a+1\right).x+a^2\)
\(\Leftrightarrow-2ax=\left(3a+1\right).x\)\(\Leftrightarrow\left(3a+1\right).x+2ax=0\)
\(\Leftrightarrow\left(3a+1+2a\right).x=0\)\(\Leftrightarrow\left(5a+1\right).x=0\)
\(\Leftrightarrow5a+1=0\)\(\Leftrightarrow5a=-1\)\(\Leftrightarrow a=\frac{-1}{5}\)
Vậy \(a=\frac{-1}{5}\)
P(x)=Q(x)
⇔ x-2ax+a = x+3ax+x+a
⇔ -2ax-3ax=0
⇔-5ax=0
⇒a=0
vậy a=0 thì đa thức P(x)=Q(x)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Tìm hệ số x^3 trong đa thức sau
a) Q(x) = (x^2 - x + 1)x - (x+1)x^2
b) G(x) = [5x^2 - a(x+a)] - [3(a^2 - x^2)+2ax] + [2ax-4(a+2ax^2)]
Giúp em với ạ
1.Tính giá trị của đa thức sau : P = 6x^3-4x^2y-14y^2+21xy+9 biết 2x^2+7y=0
2 . Cho P(x) = x^3-2ax+a^2
Q(x)=x^2+(3a+1)x + a^2
tìm a BIẾT : p (1) = q(3)
3 . tìm x : a) 3|x|=x+12
b) |2x-6|+5x=9
c) |x-2|=|3x+1|
Bài 1: phân tích đa thức thành nhân tử
a) 3a^x-3a^2y +abx-aby
b)2ax^3+6ax^2+6ax+18a
c)3ax^2+3bx^2+bx+5a+5b
d)2ax^2-bx^2-2ax+bx+4a-b
Bài 2 tính gt biểu thức
a)x(x-3)-y(3-x)với x =1/3;y=8/3
b)2x^2.(x^2+y^2)+2y^2.(x^2 + y^2)+5.(y^2+x^2) với x^2+y^2=1
Bài 2:
a) x(x - 3)- y(3 - x)
= x(x - 3) + y(x - 3)
= (x - 3)(x + y) (1)
Thay x = \(\frac{1}{3}\); y = \(\frac{8}{3}\)vào (1)
Ta có: (\(\frac{1}{3}\)- 3)(\(\frac{1}{3}\)+ \(\frac{8}{3}\))
= \(\frac{-8}{3}\). 3
= -8
cho A(x)=x^(2-2ax+a^(2, Q(x)=x^(2+(3a+1)x+a^(2. Tim gia tri cua a de A(1)=Q(3)
A(x)=x^2-2ax+a^2
Q(x)=x^2+(3a+1)x+a^2
A(1)=Q(3)
=>1-2a+a^2=3^2+3(3a+1)+a^2
=>1-2a=9+9a+3
=>9a+12=-2a+1
=>11a=-11
=>a=-1
Tìm các hệ số a , b và c biết :
Đa thức \(x^3+2ax+b\) chia hết cho đa thức x - 1 còn khi chia hết cho đa thức x + 2 được dư là 3
\(f\left(x\right)=x^3+2ax+b\)
Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)
Vì \(f\left(x\right)\)chia \(x+2\)dư \(3\) \(\Rightarrow f\left(-2\right)=3\)
\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)
Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)
\(\Rightarrow b=3\)
Vậy \(a=-2;b=3\)