Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Quang Phước
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2022 lúc 13:00

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

Lữ Diễm My
Xem chi tiết
Duy Đỗ Ngọc Tuấn
13 tháng 7 2018 lúc 22:12

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

tamanh nguyen
Xem chi tiết
Monkey D. Luffy
17 tháng 11 2021 lúc 9:22

\(=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a^2b}{b^2a}}=\dfrac{\sqrt{ab}}{b}+\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{ab}}{b}+\dfrac{\sqrt{ab}}{b}=\dfrac{2\sqrt{ab}}{b}\left(B\right)\)

ILoveMath
17 tháng 11 2021 lúc 9:23

B

Chanh Xanh
17 tháng 11 2021 lúc 9:23

B

Valila Charlotte
Xem chi tiết
Yeutoanhoc
17 tháng 6 2021 lúc 15:20

`(asqrtb-bsqrta)/sqrt{ab}-(a-b)/(sqrta-sqrtb)`

`=(sqrt{ab}(\sqrta-sqrtb))/sqrt{ab}-((sqrta-sqrtb)(sqrta+sqrtb))/(sqrta-sqrtb)`

`=sqrta-sqrtb-(sqrta-sqrtb)`

`=-2sqrtb`

Trần Ái Linh
17 tháng 6 2021 lúc 15:20

`(a\sqrtb-b\sqrta)/(\sqrt(ab)) -(a-b)/(\sqrta-\sqrtb)`

`=(\sqrt(ab) (\sqrta-\sqrtb))/(\sqrt(ab)) - ((\sqrta-\sqrtb)(\sqrta+\sqrtb))/(\sqrta-\sqrtb)`

`=(\sqrta-\sqrtb) - (\sqrta+\sqrtb)`

`=-2\sqrtb`

ngọc ánh 2k8
Xem chi tiết
HT.Phong (9A5)
22 tháng 8 2023 lúc 14:10

Thiếu Gia Họ Nguyễn
Xem chi tiết
Ngoc Anhh
22 tháng 11 2021 lúc 18:58

\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{a-\sqrt{ab}+b}{\sqrt{ab}}\)

Trần Thị Ngọc Diệp
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 11 2021 lúc 20:58

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 21:01

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

123 nhan
Xem chi tiết
2611
27 tháng 8 2023 lúc 21:57

Với `a > 0,b >= 0` có:

`Bth=[a\sqrt{b}+b]/[a-b] . \sqrt{[b(a+b-2\sqrt{ab})]/[a^2+2a\sqrt{b}+b]} . (\sqrt{a}+\sqrt{b})`

 `=[\sqrt{b}(a+\sqrt{b})]/[a-b].\sqrt{[b(\sqrt{a}-\sqrt{b})^2]/[(a+\sqrt{b})^2]}.(\sqrt{a}+\sqrt{b})`

`=[\sqrt{b}(a+\sqrt{b})|\sqrt{a}-\sqrt{b}|.\sqrt{b}.(\sqrt{a}+\sqrt{b})]/[(a-b)(a+\sqrt{b})]`

`=[b|\sqrt{a}-\sqrt{b}|]/[\sqrt{a}-\sqrt{b}]`

`={(b\text{ nếu }\sqrt{a} >= \sqrt{b}),(-b\text{ nếu }\sqrt{a} < \sqrt{b}):}`

29. Đoàn Phương Nghi
Xem chi tiết
YangSu
28 tháng 6 2023 lúc 11:07

\(VT=\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right):\left(a-b\right)\\ =\left(\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}}\right).\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a}.\sqrt{a}-\sqrt{b}.\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a^2}-\sqrt{b^2}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{a-b}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{1}{\sqrt{ab}}=VP\left(dpcm\right)\)

Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 11:06

\(VT=\dfrac{a-b}{\sqrt{ab}}\cdot\dfrac{1}{a-b}=\dfrac{1}{\sqrt{ab}}=VP\)

ngọc ánh 2k8
Xem chi tiết
HT.Phong (9A5)
7 tháng 11 2023 lúc 6:36

\(\dfrac{\sqrt{a}+\sqrt{ab}}{a-b}-\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\left(a,b\ge0;a\ne b\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{ab}-\sqrt{ab}-b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}-b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}-b}{a-b}\)