Bạn nào tìm được tl hộ tớ ạ
Tìm nghiệm của đa thức C(x)=x^3+3x^2+6x+2
Tìm nghiệm của các đa thức sau :
A) A = 2.(x-1,5)-5 b) b = -3x + 8 + 6x - 9 c) C = 6x - 18x^3
Mình cần gấp ạ ! Cảm ơn bạn nhiều!!
a, \(A=2\left(x-1,5\right)-5=0\)
\(2x-3-5=0\Leftrightarrow2x-8=0\Leftrightarrow2x=8\Leftrightarrow x=4\)
b, \(B=-3x+8+6x-9=0\)
\(3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
c, \(C=6x-18x^3=0\)
\(6x\left(1-3x^2\right)=0\Leftrightarrow\orbr{\begin{cases}6x=0\\1-3x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x^2=\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{\sqrt{3}}\end{cases}}}\)
cho đa thức:
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)
c/m đa thức trên không có nghiệm
ai tl thì giải thích hộ tớ nha :) thanks
Rút gọn ta được :
\(f\left(x\right)=x^4+2x^2+1=\left(x^2+1\right)^2\)
Dễ thấy \(x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
=> đa thức vô nghiệm ( đpcm )
\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)\(=x^4+2x^2+1=\left(x^2+1\right)^2\)Dễ thấy \(x^2+1>0\)
=>\(\left(x^2+1\right)^2>0\)(Điều phải chứng minh)
tìm nghiệm của đa thức
a) x^2 + 2x +3
b) x^2 - 3x
c) 2x - 8x^3
d) 2/3- 6x^2
a) Sữa đề: \(x^2+2x-3=0\)
\(\Rightarrow x^2-x+3x-3=0\)
\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b) \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
c) \(2x-8x^3=0\)
\(\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{3}-6x^2=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.
a) \(x^2+2x+3=0\Rightarrow x^2+2x+1+2=0\Rightarrow\left(x+1\right)^2+2=0\left(1\right)\)
mà \(\left(x+1\right)^2\ge0\)
\(\left(1\right)\Rightarrow\) Đa thức có vô số nghiệm
b) \(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x=0;x=3\)
\(\Rightarrow x\in\left\{0;3\right\}\)
c) \(2x-8x^3=0\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-4x^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\left\{0;\pm\dfrac{1}{2}\right\}\)
d) \(\dfrac{2}{3}-6x^2=0\Rightarrow6x^2=\dfrac{2}{3}\Rightarrow x^2=\dfrac{1}{9}\Rightarrow x=\pm\dfrac{1}{3}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{3}\right\}\)
Tìm nghiệm của các đa thức a) A=3x-15 b) B=(x-2) (x+3) c) C=(2x-1) (x^2+2) d) D=3x^2-6x e) E=2x(x-3) -5(x-3)
a/\(3x-15=0\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy nghiệm của A là x = 5
b/\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B là \(x\in\left\{2;-3\right\}\)
c/\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x^2+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\x^2=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của C là \(x=\dfrac{1}{2}\)
d/\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của D là \(x\in\left\{0;2\right\}\)
e/\(2x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của E là \(x\in\left\{\dfrac{5}{2};3\right\}\)
Cho đa thức R(x)=x^2 + 3x
a)số nào sau đây là nghiệm của đa thức :-1,-2,-3
b)tìm các nghiệm của R(x)
MIK CẢM ƠN BẠN RẤT NHIỀU !!!
\(R\left(x\right)=x^2+3x\)
a) Ta có:
\(R\left(x\right)=x^2+3x\)
\(R\left(x\right)=x\left(x+3\right)\)
\(R\left(x\right)=x\left(x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3
b) Các nghiệm của R(x) là 0 và -3 (ở phần a)
Giúp mk vs ạ!! Thứ 2 thi r, mong mn tl nhanh ạ
Bài 5: Cho đa thức A(x)=5.x^n+1 -2.x^n -3.x^n+1 +4.x^n-x^n+1 -x^n(n thuộc N*). Tìm nghiệm của đa thức A(x)
Bài 7: Tìm nghiệm của đa thức: a) x+5 b) x^2 - 2x
Bài 8:Cho 2 đa thức f(x)=-3.x^2+2.x+1 ; g(x)=-3.x^2-2+x . Với giá trị nào của x thì f(x)=g(x) ?
Bài 3:Tìm nghiệm chung của 2 đa thức:A(x)=x^4-1/2.x^3-3.x^2-8 ; B(x)=x^2+2x
Nếu ai biết câu nào thì mong trả lời câu đó nha^^
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Bài 1 :
\(A\left(x\right)=5x^{n+1}-2x^n-3x^{n+1}+4x^n-x^{n+1}\)
\(A\left(x\right)=\left(5x^{n+1}-3x^{n+1}-x^{n+1}\right)+\left(-2x^n+4x^n\right)\)
\(A\left(x\right)=x^{n+1}+2x^n\)
Ta có : \(A\left(x\right)=0\Leftrightarrow x^{n+1}+2x^n=0\)
\(\Leftrightarrow x^n\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^n=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy nghiệm của đa thức A(x) là x = 0; x = -2
Bài 3. Tìm nghiệm của các đa thức : a) 3x-2 b) 9-x^2 c) x(2x-1) d) x^2+3 Bài 4Tìm nghiệm của đa thức bằng cách áp dụng công thức: X^2+(a+b)x+ab =(x+a)(x+b) a) x^2+8x+15 b) x^2-6x+8 c) x^2+x-6
Tìm nghiệm của đa thức :
a) 2x^3+6x
b) x^2-3x+2
c)x^2+5x-6
a,\(\sqrt{3}\)
b, 2 ; 1
c, -6 ; 1
đúng cho mình nhé
tìm đa thức g(x) rồi tìm nghiệm của g(x) 8x^2y - x^3 + 3x^2 + g(x) = 8x^2y - x^3 - 6x