Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Qasalt
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:25

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:48

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

Vũ Thị Thảo
Xem chi tiết
Trần Tuấn Hoàng
17 tháng 4 2022 lúc 20:25

B1: ĐXXĐ: \(x\ne\pm2;x\ne-1\)

\(=\left(\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\left(\dfrac{x-2-2x-2+x}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}:\dfrac{-6\left(x+2\right)}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{-4}{\left(x+2\right)\left(x-2\right)}.\dfrac{\left(x-2\right)\left(x+1\right)}{-6\left(x+2\right)}=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}\)

b, \(A=\dfrac{2\left(x+1\right)}{3\left(x+2\right)^2}>0\)

\(\Leftrightarrow2x+2>0\) (vì \(3\left(x+2\right)^2\ge0\forall x\))

\(\Leftrightarrow x>-1\).

-Vậy \(x\in\left\{x\in Rlx>-1;x\ne2\right\}\) thì \(A>0\).

 

Meaia
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:57

a: \(A=\dfrac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\dfrac{-6}{\left(x+2\right)}\cdot\dfrac{-\left(x+1\right)}{6\left(x+2\right)}=\dfrac{\left(x+1\right)}{\left(x+2\right)^2}\)

b: A>0

=>x+1>0

=>x>-1

c: x^2+3x+2=0

=>(x+1)(x+2)=0

=>x=-2(loại) hoặc x=-1(loại)

Do đó: Khi x^2+3x+2=0 thì A ko có giá trị

Nguyễn Hiếu
Xem chi tiết
Nguyễn Đức Hoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 9:24

a: ĐKXĐ: x<>1; x<>2; x<>3

\(K=\left(\dfrac{x^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+2x^2+1-x^2}\)

\(=\dfrac{x^3-x^2+x^3-3x^2}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}\)

\(=\dfrac{2x^3-4x^2}{\left(x-2\right)}\cdot\dfrac{1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\dfrac{2x^2}{x^4+x^2+1}\)

b:

loading...

 

vũ linh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 18:28

a) đk: \(x\ne0;4\)\(x>0\)

P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) Để P < \(\dfrac{1}{2}\)

<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)

<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)

<=> \(\sqrt{x}< 2\)

<=> x < 4

<=> 0 < x < 4

vũ linh
24 tháng 6 2021 lúc 18:49

c, Tìm gt nguyên của x để P có gt nguyên

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 20:44

a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

Big City Boy
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 17:40

Bạn tham khảo lời giải tại đây:

Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x 2} \dfrac{x^2}{x^2-5x 6}\right):\dfrac{x^4 x^2 1}{x^2-4x 3}\) - Hoc24

Big City Boy
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 17:39

Lời giải:

ĐK: $x\neq 1;2;3$

\(A=x^2\left[\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}\right].\frac{(x-1)(x-3)}{x^4+x^2+1}\)

\(=x^2.\frac{x-3+x-1}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=x^2.\frac{2(x-2)}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=\frac{2x^2}{x^4+x^2+1}\)

Áp dụng BĐT AM-GM: $x^4+1\geq 2x^2$

$\Rightarrow A\leq \frac{2x^2}{2x^2+x^2}=\frac{2}{3}$

Vậy $A_{\max}=\frac{2}{3}$. Giá trị đạt tại $x^4=1$ hay $x=-1$ (do $x\neq 1$)

 

Tiến Hoàng Minh
Xem chi tiết
Akai Haruma
10 tháng 1 2022 lúc 22:03

Biểu thức không có max. Bạn coi lại đề.

Akai Haruma
10 tháng 1 2022 lúc 22:15

À ha sorry bạn. Mình quên mất điều kiện $x$ nguyên.

Xét 2 TH sau:

TH1: $x>2$:

$B=\frac{x-1}{x-2}=1+\frac{1}{x-2}$

Để $B$ max thì $\frac{1}{x-2}$ max $\Leftrightarrow x-2$ min 

Vậy $x-2$ phải là số nguyên dương bé nhất, tức là $x-2=1$

$\Leftrightarrow x=3$

Khi đó: \(B_{\max}=\frac{3-1}{|3-2|}=2(*)\)

TH2: $x< 2$

$B=\frac{x-1}{2-x}=-(1+\frac{1}{x-2})$
Để B max thì $1+\frac{1}{x-2}$ min 

$\Leftrightarrow x-2$ max. Mà $x<2$ nên $x-2$ phải là số nguyên âm lớn nhất 

$\Leftrightarrow x-2=-1$

$\Leftrightarrow x=1$

Khi đó: $B=0(**)$

Từ $(*); (**)\Rightarrow B_{\max}=2$ khi $x=3$