2x+6(x+1)=0
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
a. 2x – 3 = 4x + 6 b. x 2 1 x x 3 4 8 = 0 c. x(x – 1) + x(x + 3) = 0 d. x x 2x 2x 6 2x 2 (x 1)(x 3)
\(a.2x-3=4x+6\)
\(\Leftrightarrow2x-3-4x-6=0\)
\(\Leftrightarrow-2x-9=0\)
\(\Leftrightarrow x=\dfrac{9}{2}\)
\(S=\left\{\dfrac{9}{2}\right\}\)
\(b.x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x^2-x+x^2+3x=0\)
\(\Leftrightarrow2x^2+2=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(S=\left\{0,-1\right\}\)
Mấy câu khác bn gửi lại đc ko tại mik chx hiểu lắm
a: =>-2x=9
=>x=-9/2
c: =>x(x-1+x+3)=0
=>x(2x+2)=0
=>x=0 hoặc x=-1
a. 2x – 3 = 4x + 6 b. x+2/4-x+3-1-x/8=0 c. x(x – 1) + x(x + 3) = 0 d. x/2x-6-x/2x+2=2x/(x+1)(x-3)
\(a,2x-3=4x+6\)
\(\Leftrightarrow2x-4x=6+3\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\dfrac{9}{2}\)
\(b,\) Ghi vậy mình không làm được.
\(c,\)\(x\left(x-1\right)+x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x-1+x+3\right)=0\)
\(\Leftrightarrow x\left(2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(d,\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}=0\left(dkxd:x\ne-1;x\ne3\right)\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x-3\right)-2.2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2+3x-4=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\left(tmdk\right)\)
Vậy \(S=\left\{1\right\}\)
bài 7 tìm x
1,x(x+3)-5(x+3)=0 2,5x(x-1)=x-1
3,(x+1)=(x+1)\(^2\) 4,x(2x-3)-2(3-2x)=0
5,\(\left(x-2\right)^2-4=0\) 6,\(36x^2=49\)
7,\(2x\left(x-6\right)-x+6=0\) 8,\(3x\left(2x-1\right)-24x+12=0\)
9,\(x^2-6x+8=0\) 10,\(x^2+2x-15=0\)
1: =>(x+3)(x-5)=0
=>x=5 hoặc x=-3
2: =>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
5: =>(x-4)*x=0
=>x=0 hoặc x=4
10: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
9: =>(x-2)(x-4)=0
=>x=2 hoặc x=4
7: =>(x-6)(2x-1)=0
=>x=1/2 hoặc x=6
8: =>(2x-1)(3x-12)=0
=>x=4 hoặc x=1/2
a. x (x²-1)=0
b. (x-1/2) 2x+5=0
c. x-2 (2/3x - 6)=0
d. x² - 2x=0
e.(x²-2x+1)-4=0
f.x(2x-1)=0
g.4x²+4x+1=0
h.x²-5x+6=0
i. 2x²+3x=0
\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)
Câu \(b\) thấy hơi kì nên chắc đề như này.
\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)
\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)
\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)
a) \(x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy: x∈{-1;0;1}
d) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: x∈{0;2}
e) \(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: x∈{3;-1}
f) \(x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)
g) \(4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
hay \(x=\frac{-1}{2}\)
Vậy: \(x=\frac{-1}{2}\)
h) \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: x∈{2;3}
i) \(2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-3}{2}\right\}\)
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
M) (2x+3)(-x+7)=0
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x +6 = 0
<=> x^2 - 5x = -6
<=> - 4x = -6
<=> x= -6/-4
Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm
A) 2x2(x+3) - x(x+3) = 0 <=> x(x - 3)(2x-1)=0
B) (2x+5)2 - (x+2)2=0 <=> (x+3)(3x+7)=0
C) (x2-2x) - (3x-6)=0 <=> (x-2)(x-3)=0
D) (2x-7)(2x-7-6x+18)=0 <=> (2x-7)(-4x+11)=0
E) (x-2)(x+1) - (x-2)(x+2)=0 <=> (x-2)*(-1)=0 <=> x-2=0
G) (2x-3)(2x+2-5x)=0 <=> (2x-3)(-3x+2)=0
H) (1-x)(5x+3+3x-7)=0 <=> (1-x)(8x-4)=0
F) (x+6)*3x=0
I) (x-3)(4x-1-5x-2)=0 <=> (x-3)(-x-3)=0
K) (x+4)(5x+8)=0
H) (x+3)(4x-9)=0
B> <2X+5>2-<X+2>2=0
<2X+5-X-2><2X+X+2>=0
<X+3><3X+7>=0
X+3=0 HOẶC 3X+7=0
X=-3 HOẶC X=-7/3
C>X2-5X+6=0
X2-4X+4-X+2=0
<X-2>2-<X-2>=0
<X-2.><X-3>=0
X-2=0 HOẶC X-3=0
X=2 HOẶC X=3
D> <2X-7><2X-7-6<X-3>>=0
<2X-7><-4X+11>=0
2X-7=0 HOẶC -4X+11=0
X=7/2 HOẶC X=11/4
E><X-2><X+1>=X2-4
<X-2><X+1>-<X2-4>=0
<X-2><X+1>-<X-2><X+2>=0
-X+2=0
X=2
CÒN NHIÊU TỰ LÀM ĐI MỆT WA
Help me
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
A) 2x³+6x²=x²+3x
B) (2x+5)²=(x+2)²
C) x²-5x+6=0
D) (2x-7)²-6(2x-7)(x-3)=0
E) (x-2)(x+1)=x²-4
G) 2x(2x-3)=(3-2x)(2-5x)
H) (1-x)(5x+3)=(3x-7)(x-1)
F) (x+6)(3x-1)+x+6=0
I) (4x-1)(x-3)=(x-3)(5x+2)
K) (x+4)(5x+9)-x-4=0
H) (x+3)(x-5)+(x+3)(3x-4)=0
c. x^2-5x+6=0
<=> x^2-5x=-6
<=> -4x=-6
<=> x=-6/-4
vậy tập nghiệm của pt là s={-6/-4}
Giải các phương trình sau. 2x-1=2-x ; x-5x-1/6=8-3x/4. ; x/3 - 2x+1/2=x/6 - x ; (2x-5)(x+3)=0. ; (1-7)(2+x)=0
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2