Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hồng Quang
Xem chi tiết
Lê Hoàng Tiến
Xem chi tiết
bill gates trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2023 lúc 8:04

1: 

=3(x^2-1/3x+1/3)

=3(x^2-2*x*1/6+1/36+11/36)

=3(x-1/6)^2+11/12>=11/12

Dấu = xảy ra khi x=1/6

2: a^3+11a

=a^3-a+12a

=a(a-1)(a+1)+12a

Vì a;a-1;a+1là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!

=>a^3-a chia hết cho 6

=>a^3-a+12a chia hết cho 6

=>ĐPCM

akmu
Xem chi tiết
Oh Nguyễn
Xem chi tiết
Unruly Kid
10 tháng 11 2017 lúc 11:01

Gọi số nguyên đó là a. Ta cần chứng minh

\(a^3+11a⋮6\)

Xét: \(a^3+11a=a\left(a^2+11\right)=a\left(a^2-1+12\right)=a\left(a^2-1\right)+12a=a\left(a+1\right)\left(a-1\right)+12a⋮6\)

Vậy ta có đpcm.

Thư
Xem chi tiết
Phan Thiện Minh 3
30 tháng 1 2021 lúc 22:26

そちそらみきみらにそちにきにかなにのくらみきくにいな

Khách vãng lai đã xóa
Xyz OLM
30 tháng 1 2021 lúc 22:26

Gọi 2 số đó lần lượt là a ; b (a,b \(\inℤ\))

Xét hiệu (a3 + b3) - (a + b) 

= (a3 - a) + (b3 - b)

= a(a2 - 1) + b(b2 - 1)

= (a - 1)a(a + 1) + (b - 1)b(b + 1)

Vì a ; b \(\inℤ\)=> (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp 

=> Tồn tại 1 số chia hết cho 2 và 3 , mà (2,3) = 1

=> (a - 1)a(a + 1) \(⋮\)

Tương tự (b - 1)b(b + 1) \(⋮\)6

=> (a3 + b3) - (a + b) \(⋮\)6

=> ĐPCM

Khách vãng lai đã xóa
Nobi Nobita
31 tháng 1 2021 lúc 8:48

Gọi 2 số nguyên là \(a,b\)\(a,b\inℕ\))

Tổng các lập phương của 2 số nguyên là \(a^3+b^3\)

Tổng của 2 số nguyên đó là \(a+b\)

Xét hiệu ta có: \(\left(a^3+b^3\right)-\left(a+b\right)\)

\(=a^3+b^3-a-b=\left(a^3-a\right)+\left(b^3-b\right)\)

\(=a\left(a^2-1\right)+b\left(b^2-1\right)=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)

Vì \(a\)\(a-1\)\(a+1\)là 3 số nguyên liên tiếp

\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮2\)và \(a\left(a-1\right)\left(a+1\right)⋮3\)

mà \(\left(2;3\right)=1\)\(\Rightarrow a\left(a-1\right)\left(a+1\right)⋮6\)

Chứng minh tương tự: \(b\left(b-1\right)\left(b+1\right)⋮6\)

\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)⋮6\)

\(\Rightarrow\left(a^3+b^3\right)-\left(a+b\right)⋮6\)(1)

+) Ta chứng minh \(a^3+b^3⋮6\)\(\Rightarrow a+b⋮6\)

Thật vậy, nếu \(a^3+b^3⋮6\)thì từ (1) \(\Rightarrow a+b⋮6\)( đpcm )

+) Ta chứng minh \(a+b⋮6\)\(\Rightarrow a^3+b^3⋮6\)

Thật vậy, nếu \(a+b⋮6\)thì từ (1) \(\Rightarrow a^3+b^3⋮6\)( đpcm )

Như vậy ta luôn có: \(a^3+b^3⋮6\)\(\Leftrightarrow a+b⋮6\)( đpcm )

Khách vãng lai đã xóa
oOo_Duy Anh Nguyễn_oOo
Xem chi tiết
Nguyễn Trường Đạt
Xem chi tiết
Nguyễn Trường Đạt
9 tháng 10 2017 lúc 20:13

2017 lần

FFPUBGAOVCFLOL
Xem chi tiết
Nguyễn Linh Chi
16 tháng 5 2020 lúc 14:05

Gọi 2016 số nguyên đấy là: \(a_1;a_2;a_3;...;a_{2016}\)

Ta có: \(a_i^3-a_i=a_i\left(a_i^2-1\right)=a_i\left(a_i-1\right)\left(a_i+1\right)⋮6\)  với i là số bất kì từ 1 đến 2016

( 3 số tự nhiên liên tiếp vừa chia hết cho 2 vừa chia hết cho 3 nên chia hết cho 6 ) 

=> \(\left(a_1^3+a_2^3+a_3^3+...+a_{2016}^3\right)-\left(a_1+a_2+a_3+...+a_{2016}\right)\)

\(\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_{2016}^3-a_{2016}\right)⋮6\)

mà \(a_1+a_2+a_3+..+a_{2016}=2016⋮6\)

=> \(a_1^3+a_2^3+a_3^3+..+a_{2016}^3⋮6\)

Khách vãng lai đã xóa