Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Khánh
Xem chi tiết
Vân Khánh
3 tháng 9 2021 lúc 15:17

Giusp e ạ !

H Phương Nguyên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:11

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:53

a.

\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)

\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)

\(\Rightarrow y_{min}=y\left(1\right)=0\)

\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)

b.

\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]

\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)

Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:58

c.

\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)

Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=-t^2-t+2\)

\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)

\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)

d.

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)

\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)

\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 20:57

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 21:07

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

Pikachu
Xem chi tiết
ngonhuminh
15 tháng 4 2018 lúc 20:40

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

Vĩ Vĩ
Xem chi tiết
Akai Haruma
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Akai Haruma
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Akai Haruma
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

phamthiminhanh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Akai Haruma
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Akai Haruma
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 20:38

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

 

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 7:27

Câu 1:

a, Giả sử \(A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\ge0\)

\(\Leftrightarrow A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge0\)

Mà \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow A\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\cdot\dfrac{a}{b}-2\cdot\dfrac{b}{a}+2\ge0\)

\(\Leftrightarrow\left(\dfrac{a^2}{b^2}-2\cdot\dfrac{a}{b}+1\right)+\left(\dfrac{b^2}{a^2}-2\cdot\dfrac{b}{a}+1\right)\ge0\\ \Leftrightarrow\left(\dfrac{a}{b}-1\right)^2+\left(\dfrac{b}{a}-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Dấu \("="\Leftrightarrow a=b\)

b, \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\right)+2+\left(\dfrac{a^2}{b^2}+2+\dfrac{b^2}{a^2}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-4\)

\(B=\left(\dfrac{a^4}{b^4}-2\cdot\dfrac{a^2}{b^2}+1\right)+\left(\dfrac{b^4}{a^4}-2\cdot\dfrac{b^2}{a^2}+1\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\\ \Leftrightarrow B=\left(\dfrac{a^2}{b^2}-1\right)^2+\left(\dfrac{b^2}{a^2}-1\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\dfrac{a}{b}+\dfrac{b}{a}-4\\ \Leftrightarrow B\ge0+0+0+\dfrac{a^2+b^2}{ab}-4\ge\dfrac{2ab}{ab}-4=2-4=-2\)

Dấu \("="\Leftrightarrow\left(a;b\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Câu 2:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=M^2\\ \Leftrightarrow M^2\le25\cdot25\\ \Leftrightarrow M\le25\)

Dấu \("="\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{25}{25}=1\Leftrightarrow\left\{{}\begin{matrix}x^2=9\\y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(M_{max}=25\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)