Cho tam giác ABC cân tại A ( góc A > 90). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẩng bờ AB chứa C vẽ tia Bx sao cho góc ABx= góc AMB. Tia Bx cắt tia AM ở D.
a) cm: tam giác AMB≈ tam giác ABD
b) cm: MB.MC=MA.MD
Cho tam giác ABC cân tại A ( góc A > 900). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẩng bờ AB chứa C vẽ tia Bx sao cho góc ABx= góc AMB. Tia Bx cắt tia AM ở D.
a) cm: tam giác AMB≈ tam giác ABD
b) cm: MB.MC=MA.MD
c) cm: tam giác MBA ≈ tam giác MDC
Cho tam giác ABC cân tại A ( góc A > 900). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẩng bờ AB chứa C vẽ tia Bx sao cho góc ABx= góc AMB. Tia Bx cắt tia AM ở D.
a) cm: tam giác AMB≈≈ tam giác ABD
b) cm: MB.MC=MA.MD
c) cm: tam giác MBA ≈≈ tam giác MDC
Cho tam giác ABC cân tại A ( góc A > 90 độ). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẳng chứa C bờ AB, vẽ tia Bx sao cho góc ABx= AMB. Tia Bx cắt AM ở D. CMR:
a/ Chứng minh tam giác AMB ~ ABD
b/ Chứng minh MB.MC=MA.MD
Mk cần gấp ak ai nhanh mk tick nha mấy bạn vẽ hình cho mk vs mk cảm ơn ><
a: Xét ΔAMB và ΔABD có
\(\widehat{AMB}=\widehat{ABD}\)
\(\widehat{BAM}\) chung
Do đó: ΔAMB∼ΔABD
b: Xét ΔMBD và ΔMAC có
\(\widehat{MDB}=\widehat{MCA}\left(=\widehat{ABM}\right)\)
\(\widehat{BMD}=\widehat{AMC}\)
Do đó: ΔMBD∼ΔMAC
Suy ra: MB/MA=MD/MC
hay \(MB\cdot MC=MA\cdot MD\)
Cho tam giác ABC cân tại A ( góc A > 900). Lấy điểm M nằm giữa B và C. Trên nửa mặt phẩng bờ AB chứa C vẽ tia Bx sao cho góc ABx= góc AMB. Tia Bx cắt tia AM ở D.
a) cm: tam giác AMB\(\approx\) tam giác ABD
b) cm: MB.MC=MA.MD
c) cm: tam giác MBA \(\approx\) tam giác MDC
a: Xét ΔAMB và ΔABD có
\(\widehat{AMB}=\widehat{ABD}\)
góc BAD chung
Do đó: ΔAMB\(\sim\)ΔABD
b: Xét ΔCMA và ΔDMB có
\(\widehat{MAC}=\widehat{MBD}\)
\(\widehat{AMC}=\widehat{BMD}\)
Do đó: ΔCMA\(\sim\)ΔDMB
Suy ra: MC/MD=MA/MB
hay \(MB\cdot MC=MA\cdot MD\)
cho tam giác ABC cân tại A (AB>BC) . Trên tia BC lấy điểm M sao cho MA=MB . Vẽ tia Bx song song với AM (Bx và AM cùng nằm trong nửa mặt phẳng bờ AB). Trên tia Bx lấy điểm N sao cho BN=CM. Chứng minh rằng:
a, Góc ABN=Góc ACM
b, Tam giác AMN cân
Đáp án:
a) Xét ΔABN và ΔACM có:
+ AB = AC
+ góc ABN = góc ACM (do BN// AM)
+ BN = CM
=> ΔABN = ΔACM (c-g-c)
b) DO ΔABN = ΔACM
=> AN = AM
=> ΔAMN cân tại A
Cho tam giác ABC vuông cân tại A . D là điểm bất kì trên cạnh AB . Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ Tia Bx sao cho góc ABx=135 ĐỘ. đường thẳng vuông góc với CD tại D cắt Bx tại E. CMR tam giác CDE là tam giác cân
Lấy F thuộc AC sao cho AD = AF. Khi đó tam giác ADF vuông cân ở A ==> DFAˆ=450→DFCˆ=1350
Ta có:
BDEˆ=1800−EDCˆ−ADCˆ=1800−900−ADCˆ=900−ADCˆ
ACDˆ=900−ADCˆ (vì tam giác ADC vuông ở A)
Suy ra ACDˆ=BDEˆ
Mặt khác:
BD = AB - AD
CF = AC - AF
AB = AC, AD = AF
Nên BD = CF.
Xét tam giác BDE và tam giác FCD:
BD = FC
BDEˆ=FCDˆ
EBDˆ=DFCˆ(=1350)
Suy ra ΔBDE = ΔFCD (g.c.g) ==> DE = DC
Mà tam giác EDC vuông ở D.
Suy ra tam giác EDC vuông cân ở D.
Cho tam giác ABC vuông cân tại A . D là điểm bất kì trên cạnh AB . Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ Tia Bx sao cho góc ABx=135 ĐỘ. đường thẳng vuông góc với CD tại D cắt Bx tại E. CMR tam giác CDE là tam giác cân
Cho tam giác ABC vuông cân tại A,D là điểm bất kì trên cạnh AB.Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tia Bx sao cho góc ABx=135 độ. Đường thẳng vuông góc với DC vẽ từ D cắt tia Bx tại E.Chứng minh rằng tam giác DEC vuông cân
trên tia AC lấy điểm F sao cho À = AD
Nối D với C ; D với F
\(\Rightarrow\Delta ADF\)vuông cân tại A
\(\Rightarrow\widehat{ADF}=\widehat{AFD}=45^o\)
Mà \(\widehat{AFD}+\widehat{DFC}=180^o\)( 2 góc kề bù )
hay \(\widehat{DFC}=180^o-45^o=135^o\)
Xét \(\Delta ADC\)vuông tại A có :
\(\widehat{ADC}+\widehat{ACD}=90^o\)( 1 )
vì \(\widehat{ADC}+\widehat{CDE}+\widehat{EDB}=180^o\)
hay \(\widehat{ADC}+90^o+\widehat{EDB}=180^o\)
\(\Rightarrow\widehat{ADC}+\widehat{EDB}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ACD}=\widehat{EDB}\)
vì \(\Delta ABC\)vuông cân \(\Rightarrow AB=AC\)mà AB = AF
\(\Rightarrow BD=FC\)
Xét \(\Delta BDE\)và \(\Delta CFO\)có :
\(\widehat{ACD}=\widehat{EDB}\)( cmt )
BD = FC ( cmt )
\(\widehat{DFC}=\widehat{DBE}\)( = 135 độ )
Suy ra : \(\Delta BDE\)= \(\Delta CFO\)( g.c.g )
\(\Rightarrow\)DC = DE ( 2 cạnh tương ứng )
mà \(\widehat{CDE}\)= \(90^o\)
Suy ra : \(\Delta DEC\)là tam giác vuông cân
Cho tam giác ABC có góc B = 60o, AB=6cm, góc A = 75o. Vẽ tia Bx nằm giữa tia BA và tia BC sao cho góc ABx = 45o
Từ điểm A vẽ góc BAD = 90 độ (D thuộc Bx). Lấy E trên cạnh BC với BE = 6cm
a. Chứng minh tam giác ABE là tam giác đều, tam giác ABD là tam giác vuông cân, rồi so sánh độ dài đoạn AE với AD
b. Chứng minh tam giác DAC = tam giác EAC
c. Chứng minh DC vuông góc BC