Cm rằng : A= x2 + y2 - 4x +2y +7 > 0 với mọi số thực x, y
CM rằng
a) x2+2xy+y2+1>0 với mọi x
b) x2+y2+1≥xy+x+y
c) x2-x+1>0 với mọi số thực x
em mong mọi người giúp đỡ em cảm ơn ạ
a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)
CM rằng BT luôn dương với mọi giá trị
a) x^2-x+1>0 với mọi x
b)4x^2+y^2-z^2-4x-2z+2y+2014>0 với mọi x;y;z
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
CM 4x^2-4xy+2y^2+1>0 với mọi số thực x và y
x2-6xy+y2+1 > 0 với mọi số thực của x và y
-25x2+5x-1 < 0 với mọi số thực của x
\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)
CMR:
a) 4x^2-6x+9>0 với mọi số thực x
b) x^2+2y^2-2xy+y+1>0 với mọi số thực x,y
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)
CM rằng BT luôn dương với mọi giá trị
b)4x^2+y^2-z^2-4x-2z+2y+2014>0 với mọi x;y;z
#Toán lớp 8chứng minh:
a. x2- 4xy + y2+ 2 > 0 với mọi số thực x, y.
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
Trong tất cả các cặp số (x,y) thỏa mãn log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ 1 , giá trị thực của m để tồn tại duy nhất cặp (x,y) sao cho x 2 + y 2 + 4 x + 6 y + 13 - m = 0 thuộc tập nào sau đây?
A. [8;10]
B. [5;7]
C. [1;4]
D. [-3;0]
Đáp án A
Ta có, giả thiết log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính R 1 = 2
Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m là đường tròn tâm I(-2;-3); R 2 = m
Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9
Xét các số thực x, y thỏa mãn x 2 + y 2 ≥ 4 và l o g x 2 + y 2 ( 4 x - 2 y ) ≥ 1 . Giá trị lớn nhất của biểu thức P=3x+4y-5 là với a, b là các số nguyên. Tính T = a 3 + b 3
A. 0
B. 250
C. 152
D. 98