Cho đa thức A(x)=\(-x^2+3x-2\)
Chứng minh rằng: A(x) vô nghiệm
chứng minh rằng đa thức: x^2-3x+12 vô nghiệm với mọi x
vì x^2 >hoặc= 0 (với mọi giá trị của x)
Suy ra x^2-3x+12 > 0 (với mọi x)
Suy ra x^2-3x+12 khác o
Suy ra x^2-3x+12 vô nghiệm
Tham khảo:x^2-5x+20
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4
=x(x-2/5)-2/5(x-2/5)+55/4
=(x-2/5)(x-2/5)+55/4
=(x-2/5)^2+55/4
Ta có: (x-2/5)^2>=0 Với x thuộc R
(x-2/5)^2+55/4>=55/4>0
=>Đa thức không có nghiệm
cho đa thức p(x)=-8x^3+3x^4-x^2+5x^2-2020+6x^3-3x^4+2025+2x^3 chứng minh đa thức p(x) vô nghiệm
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
chứng minh đa thức vô nghiệm -3x^2+x-2
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)
\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
=> Phương trình luôn vô nghiệm
Chứng tỏ rằng đa thức sau vô nghiệm.
a) f (x) = x2( x2 +1) + x2 ( x +3 ) + 3x + 3
Ta có \(f\left(x\right)=x^4+x^3+4x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}x^2+3x+3\)
\(=x^2\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\left(x+\frac{2}{5}\right)^2+\frac{12}{5}>0\) với mọi \(x\inℝ\)
Vậy đa thức trên vô nghiệm
Chứng minh rằng đa thức sau vô nghiệm f(x) = x^2 - x - x + 2
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
cho các đa thức P=\(^{x^3-3x^4+4x-2}\), Q(x) =\(3x^4-x^2+2x-4\), R(x)=\(x^3-3x^2-16\)
a) tính f(x)= p(x)+Q(x)-R(x)
b) chứng minh rằng 1 là nghiệm của đa thức P(x) Q(x) nhưng không là nghiệm của R(x)
c)chứng minh rằng f(x) không có nghiệm
chứng minh rằng đa thức A(x) = 3x^4 + x^2 + 2018 không có nghiệm
Chứng minh rằng đa thức f(x)= x^2-x-1 vô nghiệm