Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
boy not girl
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 21:45

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

HELLO^^^$$$
27 tháng 3 2021 lúc 7:44

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

sad boy haizzz
6 tháng 2 2023 lúc 20:52

Ta có: =4+6−3n−1=4+6−3�−1

Nguyễn Ngọc Tường Vân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 9:41

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 21:37

\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)

Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)

ngân
Xem chi tiết
Akai Haruma
27 tháng 10 2023 lúc 12:55

Lời giải:

$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$

$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$

Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$

Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$

Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$

-------------------------

$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$

$<1-\frac{n+3}=\frac{n}{n+3}$

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 16:48

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Do đó:

\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)

Phương Linh
Xem chi tiết
Nguyễn Đức Trí
6 tháng 8 2023 lúc 8:26

a) \(\dfrac{n+2}{3}\) là số tự nhiên khi

\(n+2⋮3\)

\(\Rightarrow n+2\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)

b)  \(\dfrac{7}{n-1}\) là số tự nhiên khi

\(7⋮n-1\)

\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)

\(\Rightarrow7n-7n+7⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)

c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi

\(n+1⋮n-1\)

\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)

\(\Rightarrow n+1-n+1⋮n-1\)

\(\Rightarrow2⋮n-1\)

\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)

dream
Xem chi tiết
Cherry
4 tháng 3 2021 lúc 16:01

Ta có: (3n+2) chia hết cho (n-1)

Mà: (n-1) chia hết cho (n-1)

⇒(3n-3) chia hết cho (n-1)

⇒(3n+2)-(3n-3) chia hết cho n-1

⇒5 chia hết cho n-1

⇒n-1 thuộc ƯỚC của 5=1;-1;5;-5

Lập bảng giá trị và thử lại:

n-11-15-5
n206-4
3n+28220-10
(3n+2)/(n-1)8-242

Vậy n thuộc {2;0;6;-4}

𝓓𝓾𝔂 𝓐𝓷𝓱
4 tháng 3 2021 lúc 16:25

Điều kiện: \(n\in N\)

Ta có: \(A=\dfrac{6}{n+2}\)

Để \(A\in Z\) \(\Leftrightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta lập bảng

\(n+2\)-1-2-3-61236
   \(n\)-3-4-5-8-1014

  Vậy \(n\in\left\{0;1;4\right\}\)

   

𝓓𝓾𝔂 𝓐𝓷𝓱
4 tháng 3 2021 lúc 16:01

không có điều kiện gì à bạn ơi !

Nguyễn Đỗ Hà My
Xem chi tiết
Hiếu Chuối
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 21:56

\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)

\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)

\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)

\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)

\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)

\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)