Giải pt:
\(x^4+x^2=6x+8\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
\(x^2-x+8-4\sqrt{x^2-x+4}=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
\(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{-x^2+6x-8}\)
Giải pt
\(\Leftrightarrow\dfrac{2}{-x^2+6x-8}=\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\\ \Leftrightarrow\left\{{}\begin{matrix}2=\left(-x^2+6x-8\right)\left(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\right)\\-x^2+6x-8\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2=-2x^2+4x+2\\-x^2+6x-8\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\-x^2+6x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\-x^2+6x-8\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\-x^2+6x-8\ne\end{matrix}\right.\end{matrix}\right.\\\Rightarrow x=0\)
giải pt x\(^{x^4-6x^3+7x^2+6x-8=0}\)
\(x^4-6x^3+7x^2+6x-8=0\)
\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)
\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)
Vậy S={-1;1;2;4}
giải pT
(g)\(^{x^{2
}}\)-3x+2=0
i) x^4 +x^2 +6x -8=0
h) x^3-8x^2+21x-18=0
g: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
g) x^2 - 3x + 2 = 0
<=> x^2 - 2x-x+2 =0
<=> x=1 hoặc x = 2
..tự kết luận
i)x^4 + x^2 + 6x - 8=0
<=> x^4 + 2x^3 - 2x^3 - 4x^2 + 5x^2 + 10x - 4x - 8 = 0
<=> x^3(x + 2) - 2x^2(x+2) + 5x(x+2) - 4(x+2) = 0
<=> (x^3 - 2x^2 +5x -4)(x+2)=0
<=> (x^3 - x^2 -x^2 +x + 4x - 4)(x+2) = 0
<=>(x^2(x-1) - x(x-1) + 4(x-1) )(x+2) = 0
<=> (x^2-x+4)(x-1)(x+2)=0
<=> x = 1 hoặc x +-2 hoặc x^2 - x+4=0
<=>x^2 - x+ 1/4 - 1/4 +4=0
<=>(x-1/2)^2 +15/4=0
<=>(x-1/2)^2=-15/4 (vô lí)
....tự kết luận
h)x^3 - 8x^2 + 21x - 18 = 0
<=> x^3 - 2x^2 - 6x^2 + 12x + 9x - 18 = 0
<=> x^2(x-2) -6x(x-2) + 9(x-2) =0
<=>(x-3)^2(x-2)=0
<=> x=3 hoặc x =2
...tự kết luận
Giải Pt: giải rõ các bước làm giúp mik nha
(g) x^2-3x+2=0
i) x^4 +x^2 +6x -8=0
h) x^3-8x^2+21x-18=0
g: \(x^2-3x+2=0\)
=>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(x^4+x^2+6x-8=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x+2\right)\left(x^2-2x+4\right)+x\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
h) \(x^3-8x^2+21x-18=0\)
\(\Leftrightarrow x^3-2x^2+6x^2-12x+9x-18=0\)
\(\Leftrightarrow x^2\left(x-2\right)+6x\left(x-2\right)+9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)^2=0\)
\(\Leftrightarrow x-2=0\) hay \(x+3=0\)
\(\Leftrightarrow x=2\) hay \(x=-3\)
giải pt : \(3\sqrt{x^3+8}=2x^2-6x+4\)
Giải PT \(\sqrt[3]{x^3+8}=2x^2-6x+4\)
giải pt: \(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\)
\(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\\ \Leftrightarrow2\left(\sqrt{6x-5}-5\right)+\sqrt{x^2-6x+14}-3=x^2-4x-5\)
(đk x>= 5/6)
\(\Leftrightarrow\frac{2\left(6x-5-25\right)}{\sqrt{6x-5}+5}+\frac{x^2-6x+5}{\sqrt{x^2-6x+14}+3}=\left(x+1\right)\left(x-5\right)\)
\(\Leftrightarrow\frac{12\left(x-5\right)}{\sqrt{6x-5}+5}+\frac{\left(x-1\right)\left(x-5\right)}{\sqrt{x^2-6x+14}+3}-\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{12}{\sqrt{6x-5}+5}+\frac{x-1}{\sqrt{x^2-6x+14+3}}-x-1\right)=0\)
suy ra x = 5 ( dễ dàng chứng minh được cái ngoặc còn lại luôn dương với mọi x lớn hơn bằng 5/6 )
vậy x = 5 là nghiệm của phương trình