g: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
i: \(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
=>x=1 hoặc x=-2
g) x^2 - 3x + 2 = 0
<=> x^2 - 2x-x+2 =0
<=> x=1 hoặc x = 2
..tự kết luận
i)x^4 + x^2 + 6x - 8=0
<=> x^4 + 2x^3 - 2x^3 - 4x^2 + 5x^2 + 10x - 4x - 8 = 0
<=> x^3(x + 2) - 2x^2(x+2) + 5x(x+2) - 4(x+2) = 0
<=> (x^3 - 2x^2 +5x -4)(x+2)=0
<=> (x^3 - x^2 -x^2 +x + 4x - 4)(x+2) = 0
<=>(x^2(x-1) - x(x-1) + 4(x-1) )(x+2) = 0
<=> (x^2-x+4)(x-1)(x+2)=0
<=> x = 1 hoặc x +-2 hoặc x^2 - x+4=0
<=>x^2 - x+ 1/4 - 1/4 +4=0
<=>(x-1/2)^2 +15/4=0
<=>(x-1/2)^2=-15/4 (vô lí)
....tự kết luận
h)x^3 - 8x^2 + 21x - 18 = 0
<=> x^3 - 2x^2 - 6x^2 + 12x + 9x - 18 = 0
<=> x^2(x-2) -6x(x-2) + 9(x-2) =0
<=>(x-3)^2(x-2)=0
<=> x=3 hoặc x =2
...tự kết luận