\(x^4+x^2=6x+8\)
\(\Rightarrow x^4+x^2-6x-8=0\)
\(\Rightarrow x^4+x^3+4x^2-x^3-x^2-4x-2x^2-2x-8=0\)
\(\Rightarrow x^2\left(x^2+x+4\right)-x\left(x^2+x+4\right)-2\left(x^2+x+4\right)=0\)
\(\Rightarrow\left(x^2-x-2\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\left(x^2-2x+x-2\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\left[x\left(x-2\right)+\left(x-2\right)\right]\left(x^2+x+4\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+1\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x^2+x+4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\end{matrix}\right.\)
Vậy pt có nghiệm là \(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)