Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Hồng Chi
Xem chi tiết
Nguyễn Hồng Chi
13 tháng 3 2022 lúc 21:03

hichic các bn ơiiiiiiii

Lê Trần Hà Linh
Xem chi tiết
vinh do
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Trần Thành Đạt
20 tháng 4 2017 lúc 17:14

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Nguyễn Thị Thảo
20 tháng 4 2017 lúc 22:24

a) ∆ABC cân, suy ra ˆB1=ˆC1B1^=C1^

⇒ˆABM=ˆACN⇒ABM^=ACN^

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACNABM^=ACN^

BM = ON (gt)

Suy ra ˆM=ˆNM^=N^

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆNM^=N^ (CM từ câu a)

Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^

ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)

Nên ˆB3=ˆC3B3^=C3^ .

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=600BAC^=600 và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=1800−12002=300M^=BAM^=1800−12002=300 .

Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .

ˆMAN=1800−(ˆAMN+ˆANM)=1800−2.300=1200MAN^=1800−(AMN^+ANM^)=1800−2.300=1200

Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.

+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)

Suy ra ˆB3=600B3^=600

Tương tự ˆC3=600C3^=600

Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).

Phạm Thảo Vân
9 tháng 2 2018 lúc 20:20

a) ∆ABC cân, suy ra ˆB1=ˆC1

⇒ˆABM=ˆACN

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACN

BM = ON (gt)

Suy ra ˆM=ˆN

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆN (CM từ câu a)

Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2

ˆB2=ˆB3;ˆC2=ˆC3 (đối đỉnh)

Nên ˆB3=ˆC3

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=60o và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=60o nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=120o (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=180o−120o / 2=30o

Suy ra góc ANM = góc AMN=30o

Và góc MAN=1800−(góc AMN+góc ANM)=1800−2.30o=120o

Vậy ∆AMN có góc M = góc N=30o ; góc A=120o

+∆BHM có: góc M=30o nên góc B2 = 60o (hai góc phụ nhau)

Suy ra góc B3=60o

Tương tự góc C3=60o

Tam giác OBC có góc B3 = góc C3=60o nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).



NNNNNNNNN
Xem chi tiết
Dương Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 10:23

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE

=>ΔAHD=ΔAED

b: ΔAHD=ΔAED

=>DH=DE

mà DE<DC

nên DH<DC

c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC 

=>DK=DC

=>ΔDKC cân tại D

d: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

mà DK=DC

nên AD là trung trực của KC

mà M là trung điểm của CK

nên A,D,M thẳng hàng

Nguyễn Văn A
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 8:20

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD
mà góc B=60 độ

nên ΔABD đều

b: góc CAD=90-60=30 độ=góc HAD

=>AD là phân giác của góc HAC

=>DH/AH=DC/AC

mà AH<AC

nên DH<DC

Aloy Nora
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2023 lúc 11:01

a: Xét ΔABH vuông tại H và ΔDAK vuông tại K có

AB=DA

góc ABH=góc DAK

=>ΔABH=ΔDAK

b: ΔABH=ΔDAK

=>BH=AK

mà AK<AD

nên BH<AD