Cho tam giác ABC (AB < AC) vuông tại A. Đường cao AH. Trên cạnh AC lấy điểm E sao cho AH = AE. Qua E kẻ đường thẳng vuông góc với AC cắt BC tại D
a, Chứng minh tam giác AHD = tam giác AED
b, So sánh DH và DC
c, Gọi DE cắt AH tại K. Chứng minh DKC cân tại C
d, Gọi M là trung điểm của KC. Chứng minh ba điểm A, D, M thẳng hàng
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: ΔAHD=ΔAED
=>DH=DE
mà DE<DC
nên DH<DC
c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
d: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
mà DK=DC
nên AD là trung trực của KC
mà M là trung điểm của CK
nên A,D,M thẳng hàng