Giải phương trình \(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
Giải các phương trình sau với ẩn là x
a)\(\dfrac{x-a}{bc}+\dfrac{x-b}{ac}+\dfrac{x-c}{ab}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
b) \(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
giải phương trình sau
\(\left(\dfrac{x-a}{bc}-\dfrac{1}{b}\right)+\left(\dfrac{x-b}{ca}-\dfrac{1}{c}\right)+\left(\dfrac{x-c}{ab}-\dfrac{1}{a}\right)=\dfrac{ab+bc+ca}{abc}\)
Giải các phương trình sau vs ẩn là x
a) \(\dfrac{x-a}{bc}+\dfrac{x-b}{ac}+\dfrac{x-c}{ab}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Với a, b, c là các hằng số, giải bất phương trình sau:
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}>a+b+c\)
Mong các bạn giúp đỡ.
CMR tồn tại các hằng số a,b,c để phương trình sau có vô số nghiệm
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
Đây nhé: https://olm.vn/hoi-dap/question/77888.html
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}vớia\ne-b;b\ne-c;c\ne-a\)
Giải các phương trình sau:
1) \(\dfrac{5}{x-1}-\dfrac{2}{x+1}=\dfrac{5}{x-3}-\dfrac{2}{x-4}\)
2) \(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)
3) \(\dfrac{x-a-b}{c}+\dfrac{x-b-c}{a}+\dfrac{x-a-c}{b}=3\)
4) \(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3=56\)
Các cậu ơi, lm trc cho mk mấy con này nhé, mk chưa đánh xong đâu, ahihi!
Mà quên nửa, chiều mai mk fải đi hok rùi.
Tìm giá trị nhỏ nhất của biểu thức:
a,A=\(\dfrac{x+1}{\sqrt{x}-2}\) với x>4
b,B=\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ac}{b^2a+b^2c}+\dfrac{ab}{c^2a+c^2b}\) với a,b,c>0 và abc=1
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)
Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :
\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)
thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)
Bài 3: Cho \(ax+by+cz=0\) và \(a+b+c=\dfrac{1}{2019}\)
Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)