Tim GTTLN của biểu thức. -x^2+x+1
1. tim x biết
a, -12(x-5)+7(3-x)=5
b,(x-3)+(x-2)+...+10+11=11
2atim giá trị nhỏ nhất của biểu thức:7-(x-3)^2
b tim giá trị nhỏ nhất cua biểu thức:15+/x-3/
c tim giá trị lớn nhất của biểu thức:21-/x+5/
d tim giá trị lớn nhất của biểu thức:18-(x+3)^2
3a chứng minh n(3n+1)là số chắn
b chứng minh a(a+1)(a-1)chia hết cho 6
1. a, => -12x+60+21-7x = 5
=> 81 - 19x = 5
=> 19x = 81 - 5 = 76
=> x = 76 : 19 = 4
Tk mk nha
\(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
a) vơi điều kiện nào của x thì giá trị biểu thức A xác định
b) rút gọn biểu thức A
c) tim giá trị biểu thức A tại x=1
a, điều kiện xác định: x2 - 4 ≠ 0
⇔ x2 ≠ 4
⇔x ≠ 2 và x ≠ -2
b, A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
=\(\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{x^2-4}\)
= \(\dfrac{x^2-x^2-2x+2x-4}{x^2-4}\)
= \(\dfrac{x^2-4}{x^2-4}\)
= 1
c, x=1 ⇒ A= \(\dfrac{1^2}{1^2-4}-\dfrac{1}{1-2}+\dfrac{2}{1+2}\)
= \(\dfrac{4}{3}\)
a) Điều kiện xác định:
A\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.⇔\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
b) Rút gọn:
A= \(\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\).
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)[do MTC là (x-2)(x+2)].
A= \(\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{x^2-\left(x^2+2x\right)+2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)
A= \(\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
tìm GTTLN của M = \(\sqrt{x-2}+\sqrt{4-x}\)
GIẢI NHANH MK K NÈ
\(M=\sqrt{x-2}+\sqrt{4-x}\Rightarrow M^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt Cauchy, ta có ; \(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow M^2\le2+2=4\Rightarrow M\le2\)
Vậy Max M = 2 \(\Leftrightarrow\hept{\begin{cases}2\le x\le4\\x-2=4-x\end{cases}\Leftrightarrow}x=3\)
Cho biểu thức: N=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)với x ≥0; x≠1
a) Rút gọn N
b) Tìm giá trị nhỏ nhất của N
c) Tim x để biểu thức M=\(\dfrac{2\sqrt{x}}{N}\)nhận giá trị nguyên
a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
tim GTNN của biểu thức: M=(x-2020)^4+(x+y+1)^2+5
Help me pls
Trả lời:
\(M=\left(x-2020\right)^4+\left(x+y+1\right)^2+5\)
Ta có: \(\left(x-2020\right)^4\ge0\forall x;\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2+5\ge5\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2020=0\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2020\\y=-2021\end{cases}}}\)
Vậy GTNN của M = 5 khi x = 2020; y = - 2021
Cho biểu thức: P = (sqrt(x))/(sqrt(x) + 3) + (3sqrt(x))/(x - 9) a) Rút gọn biểu thức P. với x>=0;x ne9 . b) Tim giá trị của x để P = 2 ,
a, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\)
\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}+\dfrac{3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x-3\sqrt{x}+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\)
\(\Rightarrow P=\dfrac{x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)}\\ \Rightarrow P=\dfrac{x}{x-9}\)
b,Để P=2 \(\Leftrightarrow\dfrac{x}{x-9}=2\)
\(\Leftrightarrow x=2\left(x-9\right)\\ \Leftrightarrow x=2x-18\\ \Leftrightarrow x-18=0\\ \Leftrightarrow x=18\)
Tim GTNN cua biểu thức : A=|x-1|+|x-2|+|x-3|
a tim giá trị lớn nhất của biểu thức 1/x2+2010
vì x^2 >-1 =>x^2+2010>2009
=> 1/x^2+2010 >1/2009
GTLN của biểu thức là 1/2010
Ta có:
\(x^2>0\)với mọi x.
=>\(\frac{1}{x^2}\le1\)Với mọi x
=>\(\frac{1}{x^2}+2010\le2011\)với mọi x
Vậy giá trị lớn nhất của biểu thức là 2011 <=>x=1
tim gia tri lớn nhất của biểu thức:
\(\frac{2\sqrt{x}}{1+x}\)
ta thấy 1+x>= 2 căn x
=> 2 căn x/1+x bé hơn hoặc = 1
hok tốt
dấu = xảy ra khi x=-1
ĐKXĐ: x > 0
Áp dụng bđt Cô-si có \(x+1\ge2\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{1+x}\le1\)
Dấu "=" tại x = 1 (T/m ĐKXĐ)