Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yến nhy Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 9 2021 lúc 14:09

a) \(\Leftrightarrow x^2=\sqrt{4}\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm2\)

b) \(\Leftrightarrow\sqrt{\left(\dfrac{1}{2}x+1\right)^2}=9\)

\(\Leftrightarrow\left|\dfrac{1}{2}x+1\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+1=9\\\dfrac{1}{2}x+1=-9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=-16\end{matrix}\right.\)

c) \(\Leftrightarrow\sqrt{2x}-4\sqrt{2x}+16\sqrt{2x}=52\left(đk:x\ge0\right)\)

\(\Leftrightarrow13\sqrt{2x}=52\Leftrightarrow\sqrt{2x}=4\Leftrightarrow2x=16\Leftrightarrow x=8\left(tm\right)\)

Nguyễn Lê Phước Thịnh
22 tháng 9 2021 lúc 14:29

f: Ta có: \(\sqrt{\dfrac{50-25x}{4}}-8\sqrt{2-x}+\sqrt{18-9x}=-10\)

\(\Leftrightarrow\sqrt{2-x}\cdot\dfrac{5}{2}-8\sqrt{2-x}+3\sqrt{2-x}=-10\)

\(\Leftrightarrow\sqrt{2-x}=4\)

\(\Leftrightarrow2-x=16\)

hay x=-14

Tâm Phương
Xem chi tiết
Minh_MinhK
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 9:47

a) Xét ΔABC vuông tại A và ΔFEC vuông tại F có 

\(\widehat{ECF}\) chung

Do đó: ΔABC\(\sim\)ΔFEC(g-g)

Suy ra: \(\dfrac{CA}{CF}=\dfrac{CB}{CE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CA\cdot CE=CB\cdot CF\)(Đpcm)

Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 9:48

b) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

 

Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 9:48

b) Ta có: \(CA\cdot CE=CB\cdot CF\)(cmt)

nên \(CF=\dfrac{CA\cdot CE}{CB}=\dfrac{16\cdot11}{20}=8.8\left(cm\right)\)

Vậy: CF=8,8cm; BC=20cm

Yến nhy Nguyễn
Xem chi tiết
Trên con đường thành côn...
11 tháng 9 2021 lúc 20:52

undefined

Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 20:55

Bài 3: 

a: Ta có: \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

b: Ta có: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

=-2

c: Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

Trên con đường thành côn...
11 tháng 9 2021 lúc 20:57

undefinedundefined

Minh_MinhK
Xem chi tiết
Nguyễn Đức Lâm
14 tháng 5 2021 lúc 7:21

16)

a) Tam giác ABC vuông tại A : \(AB^2+AC^2=BC^2\) 

BC=10 ⇒FC=10-5.2=4.8

b) Tam giác ABC và tam giác FEC có 

   C chung 

\(\dfrac{AC}{FC}=\dfrac{BC}{EC}=0.6\)

Do đó tam giác ABC đồng dạng với tam giác FEC (C-G-C)

c)⇒Góc  FEC=ABC=AEM

Tam giác MAE và tam giác MFB có

   Góc M chung 

Góc AEM = MBF (CMT)

⇒ 2 Tam giác đồng dạng (G-G)

\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)⇒ MA.MB=MF.MB

 

Đức Thuận Trần
14 tháng 5 2021 lúc 8:54

a) Xét \(\Delta ABC\) vuông tại A có :

             \(AB^2+AC^2=BC^2\) (Định lí Py-ta-go)

=>        \(BC^2=6^2+8^2=100\) 

=>       BC = 10 (cm)

=>   CF = BC\(-\)BF = 10 - 5,2 = 4,8 (cm)

Vậy BC = 10 cm ; CF = 4,8 cm

b) Xét \(\Delta CAB\) và \(\Delta CFE\) có

 \(\left\{{}\begin{matrix}\widehat{C}:chung\\\dfrac{CF}{CE}=\dfrac{CA}{CB}\left(\dfrac{4,8}{6}=\dfrac{8}{10}=\dfrac{4}{5}\right)\end{matrix}\right.\)

=>\(\Delta CAB\sim\Delta CFE\) (c-g-c)

Vậy \(\Delta CAB\sim\Delta CFE\)

c) Xét \(\Delta MAEvà\Delta MFB\) có

\(\left\{{}\begin{matrix}\widehat{M}:chung\\\widehat{MAE}=\widehat{MFB}=90^0\end{matrix}\right.\)

=> \(\Delta MAE\sim\Delta MFB\)  (g-g)

=> \(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=> MA.MB = MF.ME

Vậy MA.MB = ME.MF

d) Xét \(\Delta BMF\) và \(\Delta BCA\) có

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFM}=\widehat{BAC}=90^0\end{matrix}\right.\) 

=> \(\Delta BMF\) \(\sim\)\(\Delta BCA\) (g-g)

=> \(\dfrac{MF}{AC}=\dfrac{BF}{BA}\) 

=> MF = \(\dfrac{8.5,2}{6}\) = \(\dfrac{104}{15}\approx6,9\left(cm\right)\)

Vậy MF \(\approx6,9\left(cm\right)\) 

Nguyễn Lê Phước Thịnh
14 tháng 5 2021 lúc 10:03

Bài 18:

*Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Vậy: BC=35cm

Phương Nguyễnnn
Xem chi tiết
LY Nguyễn
Xem chi tiết
vuongnhatbac
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 17:37

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(3-\sqrt{x-1}\right)^2}=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|=0\)

Do \(\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1>0\) với mọi x thuộc TXĐ

\(\Rightarrow\) Phương trình đã cho vô nghiệm

Không
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 22:50

Bài 2: 

Gọi K là trung điểm của AD và O là trung điểm của BC

Xét ΔABC có 

P là trung điểm của AC

O là trung điểm của BC

Do đó: PO là đường trung bình của ΔABC

Suy ra: PO//AB

hay PO//CD

Xét ΔDAB có

K là trung điểm của AD

Q là trung điểm của BD

Do đó: KQ là đường trung bình của ΔDAB

Suy ra: KQ//AB

hay KQ//CD

Xét ΔBDC có 

Q là trung điểm của BD

O là trung điểm của BC

Do đó: QO là đường trung bình của ΔBDC

Suy ra: QO//DC

Ta có: QO//DC

mà PO//DC

và QO,PO có điểm chung là O

nên Q,P,O thẳng hàng

Ta có: KQ//CD

QO//CD

mà KQ và QO có điểm chung là Q

nên K,Q,O thẳng hàng

mà Q,P,O thẳng hàng

nên K,Q,P,O thẳng hàng

hay QP//DC(1)

Xét ΔEAB có

M là trung điểm của EA

N là trung điểm của EB

Do đó: MN là đường trung bình của ΔEAB

Suy ra: MN//AB

hay MN//DC(2)

Từ (1) và (2) suy ra MN//PQ

Xét tứ giác MNPQ có MN//PQ

nên MNPQ là hình thang