tính A=\(a.\sin^2\left(d+t\right)+b.\sin\left(d+t\right)\cos\left(d+t\right)+c.\cos^2\left(d+t\right)\)biết \(\tan d\) và \(\tan t\) là nghiệm của phương trình \(a.x^2+bx+c=0\)
Giải các phương trình :
a) \(\cos\left(22^0-t\right)\cos\left(82^0-t\right)+\cos\left(112^0-t\right)\cos\left(172^0-t\right)=\dfrac{1}{2}\left(\sin t+\cos t\right)\)
b) \(\sin^2\left(t+45^0\right)-\sin^2\left(t-30^0\right)-\sin15^0\cos\left(2t+15^0\right)=\dfrac{1}{2}\sin6t\)
c) \(\sin^82x+\cos^82x=\dfrac{41}{128}\)
d) \(\sqrt{4\cos^2+1}+\sqrt{4\sin^2x+3}=4\)
e) \(\tan\left(\pi\cot t\right)=\cot\left(\pi\sin t\right)\)
Giải các phương trình :
a) \(\cos^2x+\cos^22x-\cos^23x-\cos^24x=0\)
b) \(\cos4x\cos\left(\pi+2x\right)-\sin2x\cos\left(\dfrac{\pi}{2}-4x\right)=\dfrac{\sqrt{2}}{2}\sin4x\)
c) \(\tan\left(120^0+3x\right)-\tan\left(140^0-x\right)=2\sin\left(80^0+2x\right)\)
d) \(\tan^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\tan\dfrac{x}{2}+\cos^2\dfrac{x}{2}+\cot^2\dfrac{x}{2}+\sin x=4\)
e) \(\dfrac{\sin2t+2\cos^2t-1}{\cot t-\cot3t+\sin3t-\sin t}=\cos t\)
tính giá trị các biểu thức sau:
a, \(A=\left(\sin a+\cos a\right)^2-2\sin a\cos a-1\)
b, \(B=\left(\sin a-\cos a\right)^2+2\sin a\cos a+1\)
c, \(C=\left(\sin a +\cos a\right)^2+\left(\sin a-\cos a\right)^2+2\)
d, \(D=\sin^2a.\cot^2a+\cos^2a.\tan^2a\)
~ ~ ~ Áp dụng đẳng thức \(\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\) ~ ~ ~
a)
\(\left(\sin\alpha+\cos\alpha\right)^2-2\sin\alpha\cos\alpha-1\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\right)\)
\(=\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)^2\)
= 0
b)
\(\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+1\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+2\sin\alpha\cos\alpha+\sin^2\alpha+\cos^2\alpha\)
\(=\left(\sin\alpha-\cos\alpha\right)^2+\left(\sin\alpha+\cos\alpha\right)^2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)\)
= 2
c)
\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2+2\)
\(=2\left(\sin^2\alpha+\cos^2\alpha\right)+2\)
= 4
d)
\(\sin^2\alpha\cot^2\alpha+\cos^2\alpha\tan^2\alpha\)
\(=\left(\sin\times\dfrac{\cos}{\sin}\right)^2+\left(\cos\times\dfrac{\sin}{\cos}\right)^2\)
= 1
Cho \(\tan\alpha\), \(\tan\beta\)là nghiệm phương trình: \(ax^2+bx+c=0\)
Tính theo a, b, c giá trị biểu thức: \(D=a.\sin^2\left(\alpha+\beta\right)+b.sin\left(\alpha+\beta\right).cos\left(\alpha+\beta\right)+c.cos^2\left(\alpha+\beta\right)\)
Cho tam giác ABC. Hãy rút gọn:
\(a,A=cos^2\left(540^0+\frac{B}{2}\right)+cos^2\frac{1080^0+A+C}{2}+tan\frac{B}{2}tan\frac{A+C}{2}\)
b,\(B=\frac{sin\left(\frac{B}{2}+720^0\right)}{cos\frac{A+C}{2}}+\frac{cos\left(\frac{B}{2}-900^0\right)}{sin\frac{A+C}{2}}-\frac{cos\left(A+C\right)}{sinB}.tanB\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow x=30^o\)
b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)
\(\Leftrightarrow x=30^o\)
c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)
d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)
Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(
e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)
f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)
Rút gọn các biểu thức (không dùng bảng số và máy tính)
a) \(\sin^2\left(180^0-\alpha\right)+\tan^2\left(180^0-\alpha\right).\tan^2\left(270^0+\alpha\right)+\sin\left(90^0+\alpha\right)\cos\left(\alpha-360^0\right)\)
b) \(\dfrac{\cos\left(\alpha-180^0\right)}{\sin\left(180^0-\alpha\right)}+\dfrac{\tan\left(\alpha-180^0\right)\cos\left(180^0+\alpha\right)\sin\left(270^0+\alpha\right)}{\tan\left(270^0+\alpha\right)}\)
c) \(\dfrac{\cos\left(-288^0\right)\cot72^0}{\tan\left(-162^0\right)\sin108^0}-\tan18^0\)
d) \(\dfrac{\sin20^0\sin30^0\sin40^0\sin50^0\sin60^0\sin70^0}{\cos10^0\cos50^0}\)
a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).
\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).
c) \(\dfrac{cos\left(-288^o\right)cot72^o}{tan\left(-162^o\right)sin108^o}-tan18^o\)
\(=\dfrac{cos72^ocot72^o}{tan18^o.sin72^o}-tan18^o\)
\(=\dfrac{cos^272^o.cos18^o}{sin72^osin18^o.sin72^o}-tan18^o\)
\(=cot^272^ocot18^o-tan18^o\)
\(=tan^218^ocot18^o-tan18^o\)
\(=tan18^o-tan18^o=0\).
rút gọn biểu thức
a) \(\left(Sin\alpha+Cos\alpha\right)^2+\left(Sin\alpha-Cos\alpha\right)^2\)
b) \(Sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)\)
c) \(cot^2\alpha-Cos^2\alpha\times Cot^2\alpha\)
d) \(tan^2\alpha-Sin^2\alpha\times tan^2\alpha\)
ai giúp e mấy câu này với ạ !!!
tui rất thích lượng giác:
a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2
b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1
.............................bài nào cx dễ
( k có việc j khó, chỉ sợ lòng k bền....)