Cho tam giác ABC. Hãy rút gọn:
\(a,A=cos^2\left(540^0+\frac{B}{2}\right)+cos^2\frac{1080^0+A+C}{2}+tan\frac{B}{2}tan\frac{A+C}{2}\)
b,\(B=\frac{sin\left(\frac{B}{2}+720^0\right)}{cos\frac{A+C}{2}}+\frac{cos\left(\frac{B}{2}-900^0\right)}{sin\frac{A+C}{2}}-\frac{cos\left(A+C\right)}{sinB}.tanB\)
Cho \(sin\left(x\right)+cos\left(x\right)=\dfrac{\sqrt{2}}{2}\).Trong kết quả sau đây kết quả nào sai
A.\(sin\left(x\right).cos\left(x\right)=\dfrac{-1}{4}\) B. \(sin\left(x\right)-cos\left(x\right)=\pm\dfrac{\sqrt{6}}{2}\)
C.\(sin\left(x\right)^4+cos\left(x\right)^4=\dfrac{7}{8}\) D.\(tan\left(x\right)^2+cot\left(x\right)^2=12\)
giúp mình cả cách bấm máy tính luôn
1. Tính giá trị bt lượng giác khi biết :
a. \(\cos\left(a+b\right)\cos\left(a-b\right)khi\cos a=\frac{1}{3},\cos b=\frac{1}{4}\)
b. \(\sin\left(a-b\right),\cos\left(a+b\right),\tan\left(a+b\right)khi\sin a=\frac{8}{17},\tan b=\frac{5}{12}\)và a,b là các góc nhọn.
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
Rút gọn các biểu thức sau:
a, \(A=\sin^2\left(a-b\right)+\sin^2b+2\sin\left(a-b\right).\sin b.\cos a\)
b, \(B=\cos^2a+\cos^2\left(a+b\right)-2\cos a.\cos b.\cos\left(a+b\right)\)
Mọi người giúp mình với ạ!!!
Rút gọn các biểu thức sau:
1) \(A=2cosx+3cosx\left(\pi-x\right)-sin\left(\frac{7\pi}{2}-x\right)+tan\left(\frac{3\pi}{2}-x\right)\)
2) \(B=2sin\left(\frac{\pi}{2}+x\right)+sin\left(5\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)
Chứng minh các đẳng thức sau:
a, \(\sin^4\alpha-\cos^4\alpha+1=2\sin^2\alpha\)
b,\(\dfrac{\sin^2\alpha+2\cos^2\alpha-1}{\cot^2\alpha}=\sin^2\alpha\)
c, \(\dfrac{1-\sin^2\alpha.\cos^2\alpha}{\cos^2\alpha}-\cos^2\alpha=\tan^2\alpha\)
d, \(\dfrac{\sin^2\alpha-\tan^2\alpha}{\cos^2\alpha-\cot^2\alpha}=\tan^6\alpha\)
e, \(\left(1+\cot\alpha\right)\sin^3\alpha+\left(1+\tan\alpha\right)\cos^3\alpha=\sin\alpha.\cos\alpha\)
f,\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-1}{\cot\alpha-\sin\alpha.\cos\alpha}=2\tan^2\alpha\)
A=\(\cos^21+\cos^22+\cos^23+.......+\cos^287+\cos^288+\cos^289-\frac{1}{2}\)
B=\(\sin^21+\sin^22+\sin^23+....+\sin^287+\sin^288+\sin^289-\frac{1}{2}\)
C=\(\tan^21\times\tan^22\times\tan^23\times.....\times\tan^287\times\tan^288+\tan^289\)
D=\(\left(\tan^21\div\cot^289\right)+\left(\tan^22\div\cot^288\right)+......+\left(\tan^244\div\cot^246\right)+\tan^245\)
các bạn giúp mình với
tất cả các số đều có độ hết nha trừ cái 1/2 là không có dộ
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)