Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuc Tran
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 20:19

a) Xét tam giác ABC và tam giác HAC có:

BAC = AHC =90 

ABC = HAC (cùng phụ với HAB) 

=> ABC đồng dạng HAC (g.g)

b) Vì ABC đồng dạng HAC

=> AB/BC = AH/AC

=> AB.AC=BC.AH

c) Vì AB.AC = BC.AH

=> AB^2.AC^2= BC^2 . AH^2

Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)

=> AB^2.AC^2= (AB^2+AC)^2.AH^2

=> 1/AH^2 =1/AB^2 +1/AC^2

Thanh Sơn Ngô Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 2 2022 lúc 14:51

1: Xét ΔAHD vuông tại H có ΔAED vuông tại E có

AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó; ΔAHD=ΔAED

2: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{HAD}=\widehat{CAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

hay ΔBAD cân tại B

bi bi
Xem chi tiết
kudo shinichi
27 tháng 1 2019 lúc 19:33

H B A C

Xét \(\Delta ABC\)vuông tại A ta có: 

\(AB^2+AC^2=BC^2\)( định lý Py-ta-go) (1)

Xét \(\Delta AHC;\Delta AHB\)vuông tại H ta có: 

\(AH^2+BH^2=AB^2\)( định lý Py-ta-go) (2)

\(AH^2+HC^2=AC^2\)( định lý Py-ta-go) (3)

Thay (2) và (3) vào (1) ta có:

\(2AH^2+BH^2+HC^2=BC^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=\left(BH+HC\right)^2\)

\(\Leftrightarrow2AH^2+BH^2+HC^2=BH^2+HC^2+2.BH.HC\)

\(\Leftrightarrow2AH^2=2.BH.HC\)

\(\Leftrightarrow AH^2=BH.HC\) (4) 

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{BH.HC}\) (5)

Thay (4) vào (3) ; (2) ta có:

\(\hept{\begin{cases}BH.HC+BH^2=AB^2\\BH.HC+HC^2=AC^2\end{cases}\Leftrightarrow}\hept{\begin{cases}BH.\left(HC+BH\right)=AB^2\\HC.\left(BH+HC\right)=AC^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{AB^2}=\frac{1}{BH.\left(HC+BH\right)}=\frac{1}{BH.BC}\\\frac{1}{AC^2}=\frac{1}{HC.\left(BH+HC\right)}=\frac{1}{BH.BC}\end{cases}}\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{BH.BC}+\frac{1}{HC.BC}=\frac{BH+HC}{BH.BC.HC}=\frac{BC}{BH.BC.HC}=\frac{1}{BH.HC}\)(6)

Từ (5) và (6)

\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

                             đpcm

Anhh Bằngg
Xem chi tiết
Anhh Bằngg
24 tháng 2 2022 lúc 21:13

giúp vs

 

heo lunnn Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 11 2021 lúc 22:30

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Thảo Nguyên Nguyễnn
Xem chi tiết
Trịnh Văn Chiến
23 tháng 3 2020 lúc 23:36

Ta có\(\frac{1}{AH^2}\)=\(\frac{1}{AB^2}\)+\(\frac{1}{AC^2}\) \(\Leftrightarrow\)\(\frac{1}{AH^2}\)=\(\frac{AC^2+AB^2}{AC^2AB^2}\)=\(\frac{AC^2+AB^2}{\left(AC.AB\right)^2}\)(1)

VÌ tam giacABC vuông tại A nên 

\(AC^2+AB^2=BC^2\)

+\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Leftrightarrow\)\(AB.AC=AH.BC\)

VẬY(1)\(\Leftrightarrow\) \(\frac{\left(AB.AC\right)^2}{AH^2}=BC^2\)\(\Leftrightarrow\frac{\left(AH.BC\right)^2}{AH^2}=BC^2\) \(\Leftrightarrow\frac{AH^2.BC^2}{AH^2}=BC^2\)

\(\Leftrightarrow BC^2=BC^2\)(LUÔN ĐÚNG)

\(\Rightarrow\) ĐFCM

Khách vãng lai đã xóa
Trịnh Văn Chiến
23 tháng 3 2020 lúc 23:37

CÂU b áp dụng công thức trên  là ra

Khách vãng lai đã xóa
Hà Lê
Xem chi tiết
Nguyễn Huy Tú
20 tháng 3 2022 lúc 11:18

a, Xét tam giác ABC và tam giác HBA có 

^B _ chung ; ^BAC = ^HBA = 900

Vậy tam giác ABC ~ tam giác HBA (g.g) 

b, Xét tam giác AHC và tam giác BHA ta có 

^AHC = ^BHA = 900

^HAC = ^HBA ( cùng phụ ^HAB ) 

Vậy tam giác AHC ~ tam giác BHA (g.g) 

\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\Rightarrow AH^2=HC.HB\)

Hoang Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 19:30

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

Linh Lê
8 tháng 2 2021 lúc 20:05

Ta có: BC2=102=100

AB2+AC2=62+82=100

Vậy BC2=AB2+AC2

Xét ΔABC có:

 BC2=AB2+AC2

Nên ΔABC vuông tại A(Định lí Pytago đảo)

Ta có: ΔABC vuông tại A(gt)

Nên 

Gojo Satoru
Xem chi tiết
Thu Thao
15 tháng 4 2021 lúc 21:00

undefinedundefined

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:00

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

Nguyễn Lê Phước Thịnh
15 tháng 4 2021 lúc 21:01

b) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=HB\cdot BC\)(đpcm)

Viral Zhou
Xem chi tiết
Trí Tiên
16 tháng 8 2020 lúc 21:12

A B C H D E

A)XÉT  \(\Delta ABH\)VÀ \(\Delta ADH\)

\(BH=HD\left(gt\right);\widehat{AHB}=\widehat{AHD}=90^o;\)AH LÀ CẠNH CHUNG

=> \(\Delta ABH\)=\(\Delta ADH\)(C-G-C)

=> AB = AD ( hai cạnh tương ứng )

=> \(\Delta ABD\)là tam giác cân

nhắc lại kiến thức: mà trong tam giác cân có một góc bằng 60 độ suy ra tam giác đó là tam giác đều

MÀ \(\widehat{ABH}=60^o\)hay \(\widehat{ABD}=60^o\)

=> \(\Delta ABD\)là tam giác đều

B) XÉT \(\Delta ABH\)

\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\Leftrightarrow\widehat{BAH}+60^o+90^o=180^o\Leftrightarrow\widehat{BAH}=180^o-\left(60^o+90^o\right)=30^o\)

vì \(\Delta ABH\)=\(\Delta ADH\)(cmt)

\(\Rightarrow\widehat{BAH}=\widehat{DAH}=30^o\)

có \(\widehat{BAH}+\widehat{DAH}+\widehat{DAC}=90^o\Leftrightarrow30^o+30^o+\widehat{DAC}=90^o\Leftrightarrow\widehat{DAC}=90^o-\left(30^o+30^o\right)=30^o\)

ta có \(\widehat{AHD}+\widehat{EDH}=90^o+90^o=180^o\)

hai góc này ở vị trí trong cùng phía bù nhau

=> AH // DE 

=>\(\widehat{HAD}=\widehat{ADE}=30^o\)

ta có \(\widehat{DAC}=\widehat{ADE}\)hay \(\widehat{EAD}=\widehat{ADE}\)

=> \(\Delta AED\)là tam giác cân

Khách vãng lai đã xóa
Trí Tiên
16 tháng 8 2020 lúc 22:37

A B C H D E F

c) xét \(\Delta ABC\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow90^o+60^o+\widehat{C}=180^o\Leftrightarrow\widehat{C}=180^o-\left(90^o+60^o\right)=30^o\)

xét \(\Delta AHC\)VÀ \(\Delta CFA\)

AC LÀ CẠNH CHUNG

\(\widehat{H}=\widehat{F}=90^o\)

\(\widehat{ACH}=\widehat{CAF}=30^o\)

=> \(\Delta AHC\)=\(\Delta CFA\)(ch-gn)

\(\Rightarrow AH=CF\left(1\right)\)

vì \(\Delta AHC\)=\(\Delta CFA\)(cmt)

\(\Rightarrow HC=FA\)

xét \(\Delta HAF\)VÀ \(\Delta FCH\)CÓ 

\(AF=CH\left(cmt\right);\widehat{HAF}=\widehat{FCH}=30^o;HA=FC\left(cmt\right)\)

=>\(\Delta HAF\)=\(\Delta FCH\)(c-g-c)

\(\Rightarrow\widehat{AFH}=\widehat{CHF}\)HAY \(\widehat{AFH}=\widehat{DHF}\)

XÉT \(\Delta HAF\)

\(\widehat{HAF}+\widehat{AHD}+\widehat{DHF}+\widehat{AFH}=180^o\)

\(\widehat{AFH}=\widehat{DHF}\)

\(\Leftrightarrow30^o+90^o+2\widehat{AFH}=180^o\)

\(\Leftrightarrow2\widehat{AFH}=60^o\)

\(\Leftrightarrow\widehat{AFH}=30^o\)

xét \(\Delta HAF\)

\(\widehat{AFH}=\widehat{HAF}=30^o\)

=>\(\Delta HAF\)cân tại H

=> \(AH=HF\left(2\right)\)

TỪ (1) VÀ (2) 

\(\Rightarrow AH=HF=FC\left(đpcm\right)\)

Khách vãng lai đã xóa
Trí Tiên
17 tháng 8 2020 lúc 20:49

làm cả bài này mất 1 ngày 1 đêm :<

Xét diện tích  \(\Delta ABC\) thường ta CÓ

\(S_{ABC}=\frac{AH.BC}{2}\left(1\right)\)

Xét diện tích \(\Delta ABC\)vuông ta có 

\(S_{ABC}=\frac{AB.AC}{2}\left(2\right)\)

TỪ (1) VÀ (2)

\(\Leftrightarrow S_{ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}\Leftrightarrow\frac{1}{AH}=\frac{BC}{AB.AC}\Leftrightarrow\frac{1^2}{AH^2}=\frac{BC^2}{AB^2.AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\)

Mặt khác, theo định lý Pitago thì

\(BC^2=AB^2+AC^2\)

THAY 

\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\left(đpcm\right)\)

Khách vãng lai đã xóa