Những câu hỏi liên quan
Vũ Thu An
Xem chi tiết
Trần Anh
Xem chi tiết
Lê Chí Cường
23 tháng 4 2016 lúc 22:40

Đặt \(A=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

Áp dụng bất đẳng thức cô-si, ta có:

\(a^2+b^2\ge2.\sqrt{a^2.b^2}=>a^2+b^2\ge2ab\)

\(b^2+1\ge2.\sqrt{b^2.1}=>b^2+1\ge2b\)

=>\(a^2+b^2+b^2+1\ge2ab+2b\)

=>\(a^2+2b^2+1+2\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2.\left(ab+b+1\right)}\)

Chứng minh tương tự, ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2.\left(bc+c+1\right)}\)

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ca+a+1\right)}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ab+b+1\right)}+\frac{1}{2.\left(bc+c+1\right)}+\frac{1}{2.\left(ca+a+1\right)}\)

=>\(A\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca.\left(ab+b+1\right)}+\frac{a}{a.\left(bc+c+1\right)}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{abc.c+abc+ca}+\frac{a}{abc+ca+a}+\frac{1}{ca+a+1}\right)\)

Vì abc=1(theo giả thiết)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{c+1+ca}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca+a+1}+\frac{a}{ca+a+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\frac{ca+a+1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.1\)

=>\(A\le\frac{1}{2}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

=>ĐPCM

Lê Chí Cường
23 tháng 4 2016 lúc 21:00

vâng ạ 

Phước Nguyễn
23 tháng 4 2016 lúc 21:52

Bài đây mình đã giải trong câu hỏi tương tự ấy! Bạn vào xem nhé! Tách lần lượt các hạng tử ở các mẫu của vế trái BPT để quy về dạng có thể sử dụng BĐT AM - GM cho các số không âm. Cứ thế là đường ta ta đi.... Kakaka. Đặt biến phụ chẳng hạn, đây là đặc trưng của cách thứ hai. Cách thứ ba thì đang thử nghiệm thử có an toàn không đã. 

Trường
Xem chi tiết
KWS
24 tháng 12 2018 lúc 19:52

Câu 1 :

Ta có  \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)

Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)

\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)

Do : \(a-b=15\)

\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)

\(\Rightarrow k=5.2=10\)

\(\Rightarrow a=2.10=20\)

\(\Rightarrow b=\frac{3.10}{2}=15\)

\(\Rightarrow c=\frac{40}{3}\)

zZz Cool Kid_new zZz
24 tháng 12 2018 lúc 19:56

BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):

\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)

=> cả 2 thừa số đều lẻ.

=>\(2018^a+2018a+b\)là số lẻ        (1)

Với a khác 0,từ (1) suy ra:

b lẻ.

=>3b+1  chẵn

=>2008a+3b+1 chẵn(loại)

=>a=0,thay vào đề bài,ta có:

(3b+1)(b+1)=225=3*75= 5*45=9*25

do 3b+1>b+1 và 3b+1 không chia hết cho 3

\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)

vậy:a=0,b=8

KWS
24 tháng 12 2018 lúc 20:00

Ta có : \(\left(2008a+3b+1\right)\left(2018^a+2018a+b\right)=225\)

TH1 : a khác 0 \(\Rightarrow\left(2008a+3b+1\right)\)và \(\left(2018^a+2018a+b\right)\)là 2 số lẻ

Do : \(2018^a+2018a+b\)là số lẻ nên : \(b\)là số lẻ

Khi đó : \(3b\)là số lẻ

\(\Rightarrow3b+1\)chẵn , mà \(2018^a\)chẵn

\(\Rightarrow2018a+3b+1\)chắn ( KTM )

Vậy a = 0

\(\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)

Do : \(b\in N\), suy ra : \(\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25\)

Mà  3b +1 không chia hết cho 3 và 3b + 1 > b + 1

\(\Rightarrow\left(3b+1\right)\left(b+1\right)=25.9\)

Do : \(b+1=9\)

\(\Rightarrow b=9-1=8\)

Vậy : \(a=0;b=8\)

Nguyễn Anh Thư
Xem chi tiết
Leo Messi
Xem chi tiết
Nghiêm Hồng Liên
25 tháng 6 2017 lúc 20:36

phần vết ở chỗ nào đấy

Leo Messi
25 tháng 6 2017 lúc 20:39

là sao

Nguyễn Cao Hoàng
25 tháng 6 2017 lúc 20:43

Là đương nhiên hai biểu thức trên bằng nhau , giống nhau y hệt

♡ ♡ ♡ ♡ ♡
Xem chi tiết
đoàn thị khánh linh
21 tháng 12 2016 lúc 21:11

hay

 

hit
Xem chi tiết
tth_new
9 tháng 3 2018 lúc 14:05

Với x, y là các số thực dương bất kì, theo BĐT Cô-si. Ta có:

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)

\(\Rightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT trên ta có:

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)

Tương tự \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Cộng theo vế ba bất đẳng thức trên ta được:

\(VT\left(1\right)\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+cb}{c+a}+\frac{cb+ca}{a+b}\right)=\frac{a+b+c}{4}=\frac{1}{4}\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

P/s: Bạn nói đúng, lớp 6 giải được rồi! Như mình nè , có điều không chắc thôi! =)))

Hỏi Làm Gì
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 9 2016 lúc 12:23

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

Tomari Shinnosuke
Xem chi tiết