Ta có :
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\) (đpcm)
Ta có :
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\) (đpcm)
Cho \(a,b,c>0\) . CMR :
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)
Thực hiện phép tính :
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Bài 1 : Cho hình bình hành ABCD có M là điểm bất kì trên cạnh AD. Tia BM cắt dường thẳng CD tại N. từ M kẻ đường thẳng song song với CD cắt BD tại E.
Chứng minh rằng: \(\frac{1}{ME}=\frac{1}{CD}+\frac{1}{DN}\)
Bài 2: Cho M là điểm bất kì trong tam giác ABC. Các đường thẳng AM, BM, CM lần lượt các cạnh BC, AC, AB tại A', B', C'
chứng minh rằng: \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}=2\)
Cho 3 số thực khác nhau và khác 0 là a,b,c thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . Chứng ming :
\(\frac{bc-a^2}{a\left(bc-1\right)}=\frac{b^2-ac}{b\left(1-ac\right)}\)
@Lê Trịnh Việt Tiến GIẢI ĐI
cho a, b, c >0 thỏa mãn \(a^2+b^2+c^2=1\)., Chứng minh rằng \(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ac}\le\frac{9}{2}\)
Cho a,b,c > 0 . CMR : \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{c+a}\le\frac{a+b+c}{2}\)
Some body good at toán jup tui
Cho:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2016}\) và a+b+c=2016
Cmr
Trong a;b;c có 1 số = 2016
cho a,b,c là các số thực thỏa mãn : \(a+b+c=2014\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2014}\)
tính giá trị của biểu thức : \(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}\)