tìm giá trị nhỏ nhất của hàm số y=4/x+9/(1-x) với x trong khoảng từ 0 đến 1
Giá trị tuyệt đối của số nguyên x là khoảng cách từ điểm x đến 0 trên trục số.
Kí hiệu là |x|
Tìm giá trị nhỏ nhất của bieetr thức A = |x-1|+|x+2|-3, với x, y là số nguyên.
Trả lời:
\(=\left|1-x\right|+\left|x+2\right|-3\ge\left|1-x+x+2\right|-3=0\)
Dấu ''='' xảy ra khi \(\left(1-x\right)\left(x+2\right)\ge0\Leftrightarrow-2\le x\le1\)
mà x là số nguyên nên x = -2 ; -1 ; 0 ; 1
Giá trị tuyệt đối của số nguyên x là khoảng cách từ điểm x đến điểm 0 trên trục số.
Kí hiệu là |x|.
Tìm giá trị nhỏ nhất của biểu thức A=|x+1|+|y-2|+5, với x, y là các số nguyên.
Trả lời:
\(A=\left|x+1\right|+\left|y-2\right|+5\ge5\)
Dấu ''='' xảy ra khi x = -1 ; y = 2
Vậy ...
Tìm giá trị nhỏ nhất của hàm số \(y=\frac{4}{x}+\frac{9}{1-x}\) với 0<x<1.
Cho bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 x 4 − 4 x 2 + 3 . Dưới đây là lời giải của học sinh:
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Tính y 0 = 3 ; y − 1 = y 1 = 1 . Vậy giá trị lớn nhất của hàm số là 3, và giá trị nhỏ nhất là 1.
Lời giải trên đúng hay sai? Nếu sai thì giải sai từ bước mấy?
A. Bước 2
B. Lời giải đúng
C. Bước 3
D. Bước 1
Đáp án C
Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .
Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3 trên R
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Ta có bảng biến thiên sau:
Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{4}{x}+\dfrac{1}{1-x}-1\)
\(f\left(x\right)\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
Tìm giá trị nhỏ nhất của hàm số y = e x - e - x - 2 ln ( x + 1 + x 2 ) với x ≥ 0
A. 0
B. 10
C. 2
D. -10
Cho bài toán : Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2 x 4 − 4 x 2 + 3
Dưới đây là lời giải của một học sinh.
Bước 1: Tập xác định D = ℝ . y ' = 8 x 3 − 8 x
Bước 2. Cho y' = 0 tìm x = 0 ; x = − 1 ; x = 1
Bước 3. Tính được y 0 = 3 ; y − 1 = 1 ; y 1 = 1. Vậy giá trị lớn nhất của hàm số là 3 , và giá trị nhỏ nhất là 1. Lời giải trên đúng hay sai? Nếu sai thì lời giải sai từ bước mấy?
A. Bước 2.
B. Lời giải đúng.
C. Bước 3.
D. Bước 1.
Đáp án C
Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy
Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.
gọi A là 1 điểm của đồ thị hàm số y=x+3. tìm tọa độ của điểm A dể khoảng cách từ gốc tọa độ đến a là ngắn nhất. Tìm giá trị nhỏ nhất đó
bạn học lớp mấy vậy (^-^)
Cho hàm số y = 2 x x - 2 có đồ thị (C). Tìm giá trị nhỏ nhất h của tổng khoảng cách từ điểm M thuộc (C) tới hai đường thẳng Δ 1 : x - 1 = 0 ; Δ 2 : y - 2 = 0 .
A. h = 4
B. h = 3
C. h = 5
D. h = 2