Cho\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\). Tính giá trị của mỗi tỉ số trong dãy đó.
cho dãy tỉ số bằng nhau: \(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}\)
tính giá trị của P=\(\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y+y+z+z+x}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Ta có: \(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=2.2.2=2^3=8\)
Vậy P = 8
Cho, biết a,b,c,d \(\ne0\). Tinh giá trị của mỗi tỉ số dưới\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Cho \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\). Tính giá trị của mỗi tỉ số trong dãy số đó.
\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z}\) = \(\frac{y}{x+z}\) = \(\frac{z}{x+y}\) = \(\frac{x+y+z}{y+z+x+z+x+y}\)
= \(\frac{x+y+z}{2\left(x+y+z\right)}\) = \(\frac{1}{2}\).
có gì mà mấy bn phải thắc mắc còn ngài nít mù tịt ngự trị trên ngai vàng thì triều đình này toàn lũ trẻ trâu nắm quyền, sớm muộn j cx bị mn tẩy chay
cho dãy tỉ số bằng nhau :$\frac{x}{y+z+t}$=$\frac{y}{z+t+x}$=$\frac{z}{t+x+y}$=$\frac{t}{x+y+z}$ cmr : "$\frac{x+y}{z+t}$=$\frac{y+z}{t+x}$=$\frac{z+t}{x+y}$=$\frac{t+z}{y+z}$"
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
a,Cho x,y,z là 3 số dương phân biệt hãy tính tỉ số \(\frac{x}{y}bt:\frac{y}{-x+z}=\frac{x-y}{z}=\frac{x}{y}\)
b,\(cho\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị biểu thức
Mn có thể giúp ko?
cho x,y,z là các số hữu tỉ khác 0 , sao cho :\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)
tính giá trị biểu thức M=(x+y)(y+z)(z+x)/8xyz
\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x} \)
=>\(\frac{2x+2y-z}{z}+3=\frac{2x-y+2z}{y}+3=\frac{-x+2y+2z}{x}+3\)
=>\(\frac{2x+2y+2z}{z}=\frac{2x+2y+2z}{y}=\frac{2x+2y+2z}{x}\)
=>\(\frac{x+y+z}{z}=\frac{x+y+z}{y}=\frac{x+y+z}{x}\)
=>\(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Với \(x+y+z=0\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{-xyz}{8xyz}=-\frac{1}{8}\)
Với \(x=y=z\)\(\Rightarrow M=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{8xyz}=\frac{2x.2y.2z}{8xyz}=\frac{8xyz}{8xyz}=1\)
Cho dãy tỉ số bằng nhau \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\). Tìm ba số x,y,z biết:
a) x+y+z = 180; b) x + y – z = 8
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
Cho 3 số x; y; z khác 0 thỏa mãn: \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
Tính giá trị của biểu thức P = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)