Tìm đkxđ của hàn số sau
y = \(\sqrt{sinx.cosx+2sinx-cosx-2}\)
tìm tất cả giá trị của m để hàm số sau có tập xác định R
a)y=\(\sqrt{m-cosx}\)
b)y=\(\sqrt{2sinx-m}\)
c)y=\(\dfrac{sinx-1}{cosx+m}\)
a.
\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge max\left(cosx\right)\)
\(\Leftrightarrow m\ge1\)
b.
\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)
\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)
\(\Leftrightarrow m\le-2\)
c.
\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)
\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Cho x 0 là nghiệm của phương trình sin x . cos x + 2 sin x + c o s x = 2 thì giá trị của P = 3 + sin 2 x 0 là
A. 3
B. 2
C. 1
D. 4
Câu 3 ) tìm giá trị lớn nhất của các hàm số sau :
a) y = cosx + cos(x - π/7)
b) y =√3 cos2x - sinx.cosx
c) y =( 2sinx + 1 )2 + ( 2cosx - √3)2
a/ \(y=2cos\left(\frac{\pi}{14}\right)cos\left(x-\frac{\pi}{14}\right)\)
Do \(-1\le cos\left(x-\frac{\pi}{14}\right)\le1\) với mọi x
\(\Rightarrow-2cos\left(\frac{\pi}{14}\right)\le y\le2cos\left(\frac{\pi}{14}\right)\)
\(y_{min}=-2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=-1\)
\(y_{max}=2cos\left(\frac{\pi}{14}\right)\) khi \(cos\left(x-\frac{\pi}{14}\right)=1\)
b/ \(y=\sqrt{3}cos2x-\frac{1}{2}sin2x=\frac{\sqrt{13}}{2}\left(\frac{2\sqrt{39}}{13}cos2x-\frac{\sqrt{13}}{13}sin2x\right)\)
\(\Rightarrow y=\frac{\sqrt{13}}{2}cos\left(2x+a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2\sqrt{39}}{13}\)
Do \(-1\le cos\left(2x+a\right)\le1\Rightarrow-\frac{\sqrt{13}}{2}\le y\le\frac{\sqrt{13}}{2}\)
c/ \(y=4sin^2x+4sinx+1+4cos^2x-4\sqrt{3}cosx+3\)
\(=8+4sinx-4\sqrt{3}cosx=8+8\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)\)
\(=8+8sin\left(x-\frac{\pi}{3}\right)\)
Do \(-1\le sin\left(x-\frac{\pi}{3}\right)\le1\Rightarrow0\le y\le16\)
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
y=sinx - cosx -sin2x + 1
y=2( sinx + cosx )+4 sinx.cosx - 2
tìm gtln,gtnn của y=(sinx.cosx + cosx^2)/(sinx.cosx + 1)
mn ơi giúp mk với
Câu 1: Tìm tập xác định của hàm số y=\(\dfrac{cosx-2}{1-2sinx}\)
Câu2 : Tìm m để hàm số y=\(\sqrt{m-1+2cosx}\) xác đinh trên R
câu3 : Tìm số điểm biểu diễn nghiệm của pt: 2cos5x+1
giúp e với mn ơi
1.
Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
2.
Đặt \(t=cosx\left(t\in\left[-1;1\right]\right)\)
Hàm số xác định trên R khi:
\(m-1+2cosx\ge0\forall x\in R\)
\(\Leftrightarrow m\ge f\left(t\right)=1-2t\forall x\in R\)
\(\Leftrightarrow m\ge maxf\left(t\right)=f\left(-1\right)=3\)
Vậy \(m\ge3\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
c1 gia trị nhỏ nhât của hàm số \(y=\sqrt{5-4cosx}\) trên \(\left[-\dfrac{\pi}{3},\dfrac{\pi}{2}\right]\)( cai này tui tìm được là can 3 mà ko bik đúng hay sai
c2 cho pt \(\left(\sqrt{3}+1\right)cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx-\sqrt{3}=0\). Gọi T là tổng các nghiệm thuộc \(\left[0,2\pi\right]\) của pt đã cho
c3 tìm tất cả các giá trị của m để hàm số f(x)=\(\sqrt{sin^2x-4cosx+2m}\) có tập xác định là R
Câu 1: Có \(-\dfrac{\pi}{3}\le\)\(x\le\dfrac{\pi}{2}\)
\(\Leftrightarrow\dfrac{1}{2}\le cosx\le1\)
\(\Rightarrow-2\ge-4cosx\ge-4\)
\(\Leftrightarrow\sqrt{3}\ge\sqrt{5-4cosx}\ge1\)
Vậy \(y_{min}=1\)
Câu 2: \(\left(\sqrt{3}+1\right)cos^2x+\left(\sqrt{3}-1\right)sinx.cosx+sinx-cosx-\sqrt{3}=0\)
\(\Leftrightarrow cos^2x+\sqrt{3}cos^2x+\sqrt{3}sinx.cosx-sinx.cosx+sinx-cosx-\sqrt{3}=0\)
\(\Leftrightarrow-\sqrt{3}\left(1-cos^2x\right)+\sqrt{3}sinx.cosx+cosx\left(cosx-sinx\right)-\left(cosx-sinx\right)=0\)
\(\Leftrightarrow-\sqrt{3}sin^2x+\sqrt{3}sinx.cosx+\left(cosx-1\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\sqrt{3}sinx\left(cosx-sinx\right)+\left(cosx-1\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(\sqrt{3}sinx+cosx-1\right)=0\)
\(\Leftrightarrow-\sqrt{2}.sin\left(x-\dfrac{\pi}{4}\right)\left[2sin\left(x+\dfrac{\pi}{6}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\left(1\right)\\sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow x-\dfrac{\pi}{4}=k\pi\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
mà \(x\in\left[0;2\pi\right]\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}\\x=\dfrac{5\pi}{4}\end{matrix}\right.\)
Từ (2)\(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\) (\(k\in Z\))
mà \(x\in\left[0;2\pi\right]\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\pi\\x=\dfrac{2\pi}{3}\end{matrix}\right.\)
(Chắc là tìm tổng T?)\(\Rightarrow T=\dfrac{\pi}{4}+\dfrac{5\pi}{4}+0+2\pi+\dfrac{2\pi}{3}=\dfrac{25\pi}{6}\)
Câu 3:
\(f\left(x\right)=\sqrt{sin^2x-4cosx+2m}\)
Để hàm số f(x) có tập xác định là R \(\Leftrightarrow sin^2x-4cosx+2m\ge0\forall x\)
\(\Leftrightarrow-cos^2x-4cosx+1+2m\ge0;\forall x\)
\(\Leftrightarrow2m\ge cos^2x+4cosx-1;\forall x\) (*)
Đặt \(g\left(x\right)=cos^2x+4cosx-1\)
Từ (*) \(\Leftrightarrow2m\ge\max\limits_{x\in R}g\left(x\right)\)
Vẽ bảng biến thiên của g(x) với \(-1\le cosx\le1\) sẽ tìm được max \(g\left(x\right)=4\)
\(\Leftrightarrow2m\ge4\)
\(\Leftrightarrow m\ge2\)
Vậy... (Xem hộ đáp án đúng ko?)