Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Vũ Hà My
Xem chi tiết
Họ Và Tên
Xem chi tiết
TIPO
9 tháng 8 2021 lúc 9:41

 

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:43

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:43

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

Nguyễn Thị Bích Thuỳ
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 17:17

b.

\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)

\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)

Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)

Pt trở thành:

\(\dfrac{t^2}{2}-4+t=0\)

\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 17:14

a.

ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)

Pt trở thành:

\(\dfrac{1}{t^2}+2t=3\)

\(\Rightarrow2t^3-3t^2+1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)

Kiểm tra lại vế trái đề bài câu b

Thiên Yết
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Nguyễn Phương Chi
Xem chi tiết
HT.Phong (9A5)
5 tháng 9 2023 lúc 18:24

1) \(\sqrt{x^2+1}=\sqrt{5}\)

\(\Leftrightarrow x^2+1=5\)

\(\Leftrightarrow x^2=5-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x^2=2^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=3+1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=\dfrac{4}{2}\)

\(\Leftrightarrow x=2\left(tm\right)\)

3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))

\(\Leftrightarrow43-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1=43-x\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))

\(\Leftrightarrow\sqrt{4x-3}=x-2\)

\(\Leftrightarrow4x-3=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4=4x-3\)

\(\Leftrightarrow x^2-8x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))

\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1^2\)

\(\Leftrightarrow x=1\left(tm\right)\)

Gia Huy
5 tháng 9 2023 lúc 18:24

1)

\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy PT có nghiệm `x=2` hoặc `x=-2`

2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)

Vậy PT có nghiệm `x=2`

3)

\(ĐKXĐ:x\le43\)

PT trở thành:

\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=-6` hoặc `x=7`

4)

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

PT trở thành:

\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)

5) 

ĐKXĐ: \(x\ge0\)

PT trở thành:

\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

Khi đó:

(1)\(\Leftrightarrow3t^2+8t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)

Vậy PT vô nghiệm.

Akai Haruma
5 tháng 9 2023 lúc 18:22

Bài 1:

$\sqrt{x^2+1}=\sqrt{5}$

$\Leftrightarrow x^2+1=5$

$\Leftrightarrow x^2-4=0$

$\Leftrightarrow (x-2)(x+2)=0$

$\Leftrightarrow x-2=0$ hoặc $x+2=0$

$\Leftrightarrow x=\pm 2$ (đều tm)

2. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow 2x-1=3$

$\Leftrightarrow 2x=4$

$\Leftrightarrow x=2$ (tm) 

3. ĐKXĐ: $x\leq 43$

PT \(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ 43-x=(x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-42=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x+6)(x-7)=0\end{matrix}\right.\)

$\Rightarrow x=7$ (tm) 

 

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 23:00

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)