Biến đổi biểu thức sau thành tích:
a) \(1-sin(x)\)
b) \(1+sin(x)\)
c) \(1-2cos(x)\)
d) \(1+2cos(x)\)
Bài 1 chứng minh biểu thức sau ko phụ thuộc vào biến x
1/B=cos^2xcot^2x +3cos^2x - cot^2x + 2sin^2x
2/M=2cos^4x -sin^4x +sin^2xcos^2x +3sin^2x
\(B=cos^2x.cot^2x+cos^2x-cot^2x+2\left(sin^2x+cos^2x\right)\)
\(=cos^2x\left(cot^2x+1\right)-cot^2x+2\)
\(=\frac{cos^2x}{sin^2x}-cot^2x+1=cot^2x-cot^2x+1=1\)
\(M=cos^4x-sin^4x+cos^4x+sin^2x.cos^2x+3sin^2x\)
\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(=2\left(sin^2x+cos^2x\right)=2\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
Chứng minh các đẳng thức sau :
a) 1 - cos x/ sin x = sin x/ 1 + cos x
b) ( sin x + cos x - 1 )( sin x + cos x + 1) = 2sin x cos x
c) sin2 x + 2cos x - 1/ 2 + cos x - cos2 x = cos x/ 1 + cos x
d) cos2 x - sin2 x/ cot2 x - tan2x = sin2 x cos2 x
e) 1 - cot4 x = 2/ sin2 x - 1/ sin4x
Lời giải:
a)
\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)
b)
\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)
\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)
c)
\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)
\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)
d)
\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)
\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)
e)
\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)
\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)
Ta có ddpcm.
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
Đơn giản biểu thức
tan2 x(2cos2x+sin2x-1)+cos2x
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a+1+cos2a}{2}\)
=\(\frac{2}{2}\)=1
Biến đổi tổng thành tích:
A= \(Sin^2a-Sin^2b\)
B=1 + Sina + Cosb
Lời giải:
$A=\sin ^2a-\sin ^2b=(\sin a-\sin b)(\sin a+\sin b)$
$B$ không biến đổi được. Bạn coi lại đề.
chứng minh đẳng thức
sin4x+cos4x=1-2cos2x nhân sin2x
\(\left(\sin^2x+\cos^2x\right)^2=1\)
\(\sin^4x+\cos^4x+2\sin^2x.\cos^2x=1\)
=> dpcm
1) Nếu sin a + sin b + sin c + 3 = 0 thì cos a + cos b + cos c + 10 bằng mấy ?
2) Nếu sin x + sin2x = 1 thì cos8x + 2cos6x + cos4x bằng bao nhiêu ?
\(sina+sinb+sinc+3=0\)
\(\Leftrightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)=0\)
Do \(\left\{{}\begin{matrix}sina\ge-1\\sinb\ge-1\\sinc\ge-1\end{matrix}\right.\) ;\(\forall a;b;c\)
\(\Rightarrow\left(sina+1\right)+\left(sinb+1\right)+\left(sinc+1\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(sina=sinb=sinc=-1\)
\(\Rightarrow cosa=cosb=cosc=0\Rightarrow cosa+cosb+cosc+10=10\)
b/ \(sinx=1-sin^2x\Rightarrow sinx=cos^2x\)
\(\Rightarrow sin^2x=cos^4x\Rightarrow1-cos^2x=cos^4x\)
\(\Rightarrow cos^4x+cos^2x=1\Rightarrow\left(cos^4x+cos^2x\right)^2=1\)
\(\Rightarrow cos^8x+2cos^6x+cos^4x=1\)
Chứng minh các biểu thức sau không phụ thuộc x:
a) A = \(2\left(sin^6x+cos^6x\right)-3\left(sin^4x+cos^4x\right)\)
b) \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}\)
c) C = \(2cos^4x-sin^4x+sin^2x.cos^2x+3sin^2x\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)