cho 2 số nguyên a,b bất kì .Chứng minh: \(a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
HELPPPPPPPPPP
Chứng minh bất đẳng thức:
\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\forall a,b,c\in R\)
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh
\(--------\)
Cho bốn số thực dương \(a,b,c,d\) bất kì.
Chứng minh rằng: \(\frac{a^2}{\left(b+c+d\right)^2}+\frac{b^2}{\left(c+d+a\right)^2}+\frac{c^2}{\left(d+a+b\right)^2}+\frac{d^2}{\left(a+b+c\right)^2}\ge\frac{4}{9}\)
Chứng minh bất đẳng thức
a)\(8\left(a^4+b^4\right)\ge\left(a+b\right)^4\)
b)\(\left(a^2+b^2\right)^2\ge ab\left(a+b\right)^2\)
Cho a, b là 2 số dương. Chứng minh: \(a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
qua de
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}\)
áp dụng BĐT bnyacovsky :\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
\(\left(4+4\right)\left(a^4+b^4\right)\ge\left(2a^2+2b^2\right)^2\ge\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
dấu = xảy ra khi a=b
Cho a, b, c là các số thực dương bất kì. Chứng minh rằng:
\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
Ta còn có:
Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)
đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))
Cho a,b,c là các số thực dương bất kì, chứng minh rằng:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\)
Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)
Vậy ta cần chứng minh:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Vậy bất đẳng thức ban đầu được chứng minh.
Chứng minh bất đẳng thức:\(a^2+\frac{b^2}{4}\ge b\left(a-b\right)\)
cho 2 số a,b bất kì. CMR: a4 +b4≥\(\frac{\left(a+b\right)^4}{8}\)
Trước hết ta chứng minh BĐT: \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
Thật vậy, BĐT tương đương \(2x^2+2y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\left(a^2\right)^2+\left(b^2\right)^2\ge\frac{1}{2}\left(a^2+b^2\right)^2\ge\frac{1}{2}\left[\frac{1}{2}\left(a+b\right)^2\right]^2=\frac{1}{8}\left(a+b\right)^4\) (đpcm)
Dấu "=" xảy ra khi \(a=b\)
cho 3 số a, b, c>0, và a+b+c=3. chứng minh rằng:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\frac{1}{3}\)
giải giup minh nhe
Áp dụng BĐT Cosi:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}>=4\sqrt[4]{\frac{\left(a+2\right)\left(b+2\right)}{27.27.9}.\frac{a^4}{\left(a+2\right)\left(b+2\right)}}...\)
\(>=\frac{4}{9}a\)
Tương tự
\(=>VT>=\frac{4}{9}\left(a+b+c\right)-\frac{3}{9}-2\left(\frac{a+2}{9}+\frac{b+2}{9}+\frac{c+2}{9}\right)=\frac{1}{3}.\)
Dấu "="xảy ra khi a=b=c=1