TÌM Max của biểu thức : Q = - x2 + 2xy2 + 2xy - y + 1
Tính giá trị của biểu thức C tại x=2 ; y=-1 biết 2xy2 - 3xy + x2 -4 - C = xy2 - x2 + 2y2 + 1
\(2xy^2-3xy+x^2-4-C=xy^2-x^2+2y^2+1\)
\(\Rightarrow C=2xy^2-3xy+x^2-4-\left(xy^2-x^2+2y^2+1\right)\)
\(=2xy^2-3xy+x^2-4-xy^2+x^2-2y^2-1\)
\(=xy^2-3xy+2x^2-2y^2-5\)
Thay x = 2 và y = -1 vào C ta được :
\(C=2.\left(-1\right)^2-3.2.\left(-1\right)+2.2^2-2.\left(-1\right)^2-5=9\)
Vậy : Khi x = 2 và y = -1 thì giá trị của C là -9.
Tìm Min,max của xy thỏa mãn biểu thức:
\(x^4+y^4-3=xy\left(1-2xy\right)\)
Tìm Min, Max của biểu thức P= xy.Bt rằng x,y là nghệm của PT: \(x^4+y^4-1=xy\left(3-2xy\right)\)
Ta có \(x^4+y^4-1=xy\left(3-2xy\right)\)
\(\Leftrightarrow x^4+y^4-1=3xy-2x^2y^2\)
\(\Leftrightarrow x^4+2x^2y^2+y^4=3xy+1\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=3xy+1\)
Vì \(\left(x^2+y^2\right)^2\ge0\forall x;y\)
\(\Rightarrow3xy+1\ge0\)
\(\Leftrightarrow xy\ge-\frac{1}{3}\)
\(\Leftrightarrow P\ge-\frac{1}{3}\)
Dấu "=" tại x = y = 0
Câu 1
Thực hiện các phép tính:
a.3x2y ( 5xy - 3xy2 +2xy2 )
b.( 2x - y)( 6x2 + 3xy -1).
c.(4x3 y4- xy): xy.
Câu 2
Phân tích các đa thức sau thành nhân tử:
a. x2 +6x
b. 9x2 – 1.
c. x2+2xy – 9+ y2
d. x2 - y2 -x + y
trời dài thế làm lâu phết đó nha hừm làm theo đúng công thức là được :)
b) 24x^2+6x^2y−2x−12yx−3y^2x+y
tôi làm theo cách tìm tích số
nếu thấy đúng thì tick cho tôi nha
Cho các số thực \(x^2+y^2=1\)
Tìm Max, Min của biểu thức \(P=\dfrac{4x^2+2xy-1}{2xy-2y^2+3}\)
\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)
Biểu thức này không tồn tại max mà chỉ tồn tại min
\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)
1. Tìm min của biểu thức A = 4x4 + 4x2y2 + y2 +2
2. Tìm min của biểu thức B = x2 + 2xy +y2 + (y+1)2 + 12
\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)
Tính giá trị của các biểu thức sau Q = 3 x 4 y 3 : 2 x y 2 tại x= 2, y= 1.
Tính giá trị của các biểu thức sau Q = 3 x 4 y 3 : 2 x y 2 tại x = 2;y = 1
Tìm giá trị nhỏ nhất của biểu thức sau :
A = x2+y2+x-y-2xy+1
\(A=x^2+y^2+\left(\dfrac{1}{2}\right)^2-2xy+2.\dfrac{1}{2}x-2.\dfrac{1}{2}.y+\dfrac{3}{4}\)
\(A=\left(x-y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(A_{min}=\dfrac{3}{4}\) khi \(x-y+\dfrac{1}{2}=0\)