tìm tất cả giá trị x;y sao cho x.y+1=x+y
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
cho biểu thức A= (\(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}\))
a. tìm đk xác định và rút gọn A
b. tìm tất cả giá trị của x để A>\(\dfrac{1}{2}\)
c. tìm tất cả các giá trị để B=\(\dfrac{7}{3}A\),đạt giá trị nguyên
d. tìm tất cả các giá trị để A nhỏ nhất.
1/ cho biểu thức A =\(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
a.tìm đk để A xác định
b. rút gọn A
c. tìm tất cả các giá trị để B=\(\dfrac{7}{3}A\),đạt giá trị nguyên
d. tìm tất cả các giá trị để A nhỏ nhất.
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
1:tìm tất cả các giá trị của x thỏa mãn |x+1|-2|x-1|-x=0
2:tìm tất cả các giá trị của x, y thỏa mãn | x-2|-|4x-8|-y^2=0
giúp mình nhé!mình cần gấp
Tìm tất cả giá trị của x để \(C=\dfrac{\left(x+2\right)}{\sqrt{x}}\)đạt giá trị nhỏ nhất
Lời giải:
ĐKXĐ: $x>0$
Có: $C=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$ theo BĐT AM-GM
Vậy $C_{\min}=2\sqrt{2}$. Giá trị này đạt tại $\sqrt{x}=\frac{2}{\sqrt{x}}$
$\Leftrightarrow x=2$
P=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)
a) Rút gọn
b)Tìm tất cả giá trị của x để P<4
c0 Tìm tất cả giá trị nguyên của x để P cũng nhận giá trị nguyên
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\) đk: \(x\ge0,x\ne1\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right]-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{\left(x+1\right)-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b)Để P<4 \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}< 4\) \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-4< 0\) \(\Leftrightarrow\dfrac{\sqrt{x}+2-4\left(\sqrt{x}-1\right)}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{6-3\sqrt{x}}{\sqrt{x}-1}< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-3\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}6-3\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\)
Vậy...
c)\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\) \(=1+\dfrac{3}{\sqrt{x}-1}\)
Để P nguyên khi \(\dfrac{3}{\sqrt{x}-1}\) nguyên
\(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\in I\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1\in Z\\\sqrt{x}-1\in I\end{matrix}\right.\)
Tại \(\sqrt{x}-1\in I\Rightarrow\dfrac{3}{\sqrt{x}-1}\notin Z\) (L)
Tại\(\sqrt{x}-1\in Z\) .Để \(\dfrac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;-2;4\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4\right\}\) \(\Leftrightarrow x\in\left\{0;4;16\right\}\) (tm)
Tìm tất cả các giá trị của x để nhị thức - 3 x + 2 nhận giá trị dương.
A. x < 3 2
B. x < 2 3
C. x < - 3 2
D. x > 2 3
tìm tất cả giá trị nuyên của x để biểu thức P=\(\dfrac{x-5}{\sqrt{x}+1}\) đạt giá trị nguyên
P nguyên <=> \(\dfrac{x-5}{\sqrt{x}+1}\) nguyên
<=> \(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{4}{\sqrt{x}+1}\) nguyên
<=> \(\sqrt{x}-1-\dfrac{4}{\sqrt{x}+1}\) nguyên
=> \(\sqrt{x}+1\inƯ\left(4\right)=\left\{1;2;4\right\}\) (vì \(\sqrt{x}+1>0\forall x\in N\))
...
P= \(\dfrac{2}{\sqrt{x}+\sqrt{2-x}}\) tìm tất cả các giá trị x để biểu thức P nhận giá trị nguyên
\(\sqrt{x}+\sqrt{2-x}\le\sqrt{2\left(x+2-x\right)}=2\)
\(\sqrt{x}+\sqrt{2-x}\ge\sqrt{x+2-x}=\sqrt{2}\)
\(\Rightarrow\dfrac{2}{2}\le P\le\dfrac{2}{\sqrt{2}}\Rightarrow1\le P\le\sqrt{2}\)
Mà \(P\in Z\Rightarrow P=1\)
\(\Rightarrow\sqrt{x}+\sqrt{2-x}=2\Rightarrow x=1\)