a,b,c,d thỏa mãn:
a+b=c+d
a2+b2=c2+d2
Chứng tỏ: a2013+b2013=c2013+d2013
cho a + b + c = 1; a2 + b2 + c2 = 1; a3 + b3 + c3 = 1
Chứng minh rằng a2013 + b2013 + c2013 = 1
Cho a1, a2,.....,a2013nguyen và b1,b2,.....,b2013 là 1 hoán vị của các số a1,a2,....,a2013 .
cmr (a1-b1)(a2-b2).......(a2013-b2013) là số chẵn
Giả sử tích (a1−b1)(a2−b2)...(a2013−b2013) là số lẻ
Thank you Tiểu Thư họ Nguyễn và Đặng Nhật Minh
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Tìm a,b,c,d thỏa mãn
a2+b2+c2+d2+1=a×(b+c+d+1)
\(a^2+b^2+c^2+d^2+1=a\left(b+c+d+1\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4=4ab+4ac+4ad+4a\)
\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4a+4=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2b\\a=2c\\a=2d\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=c=d=1\end{matrix}\right.\).
Vậy \(\left(a,b,c,d\right)=\left(2,1,1,1\right)\)
cho a, b, c là số dương thỏa mãn a+b+c=1
CMR:
a2/b+b2/c+c2/a>=3(a2+b2+c2)
Mình cần gấp ạ !!
Trước hết, với \(a+b+c=1\) ta có:
\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)
\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)
Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Từ đó:
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Trên parabol (P): y = x 2 ta lấy ba điểm phân biệt A (a; a 2 ); B (b; b 2 ); C (c; c 2 ) thỏa mãn a 2 – b = b 2 – c = c 2 – a . Hãy tính tích T = (a + b + 1)(b + c + 1)(c + a + 1)
A. T = 2
B. T = 1
C. T = −1
D. T = 0
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)