Chứng minh rằng:
3n+3 - 22+2 + 3n - 2n chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
Bài 1 :
Tìm chữ số tận cùng của số A = 3n+2 - 2n+2 + 3n - 2n
Bài 2:
Chứng minh rằng : nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
Bài 3 : Cho C= 2+22 + 23 +......+ 299 + 2100
a) Chứng minh rằng C chia hết cho 31
b) Tìm x để 22x - 2 = C
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
Chứng minh rằng : Với mọi số nguyên dương n thì 3n+2 – 2n+2 +3n -2n chia hết cho 10
Chứng minh với mọi số nguyên dương n thì
3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10
Giải
3^n + 2 – 2^n + 2 + 3^n – 2^n
= 3^n+2 + 3^n – 2^n + 2 - 2^n
= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )
= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )
= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )
= 3^n . 10 – 2^n . 5
= 3^n.10 – 2^n -1.10
= 10.( 3^n – 2^n-1)
Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10
chứng minh 3n+2-2n+2+3n-2n chia hết cho 10
theo mình nhớ thì đề bài có lũy thừa hay sao ý
3n+2-2n+2 +3n-2n
=(3n+2+3n)+(-2n+2 -2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1)chia hết cho 10
Vậy 3n+2-2n+2 +3n-2n chia hết cho 10
Đề phải là: chứng minh 3n+2-2n+2+3n-2n chia hết cho 10
Trả lời
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot\left(9+1\right)-2^n\cdot\left(4+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\cdot\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy...
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Chứng minh M=3n+3+3n+1+2n+3+2n+2 chia hết cho 6
Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$
$=3^{n+1}(9+1)+2^{n+2}(2+1)$
$=3^{n+1}.10+2^{n+2}.3$
$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)
chứng minh 3n+4 + 3n+2+2n+3+2n+1 chia hết cho 5
3n+4+3n+2 + 2n+3 + 2n+1
= 3n.( 34 + 32) + 2n.( 23+2)
= 3n.90 + 2n.10
= 10.( 3n.9+2n.5)
vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)
Chứng minh rằng một số nguyên dương n thì 3n + 2 - 2n + 2 + 3 n trừ 2 n chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)