Những câu hỏi liên quan
Incursion_03
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Nguyễn Bảo Hưng
Xem chi tiết
Võ Văn Quốc
28 tháng 9 2016 lúc 15:28

Nếu\(a^3+b^3+c^3=3abc\Rightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

Thật vậy:\(a+b+c=0\Rightarrow a+b=-c\\ \Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3+c^3=3abc\)

Tương tự \(a=b=c\Rightarrow\orbr{\begin{cases}3abc=3a^3\\a^3+b^3+c^3=3a^3\end{cases}\Rightarrow a^3+b^3+c^3=3abc}\)

Áp dụng ta có:\(\orbr{\begin{cases}xy+yz+zx=0\\xy=yz=zx\Rightarrow x=y=z\end{cases}}\)

Khi x=y=z,ta có P=(1+1)(1+1)(1+1)=8

Khi xy+yz+zx=0,ta có:\(xy+yz=-zx\)

Tương tự:\(yz+zx=-xy\)

               \(xy+zx=-yz\)

Ta có \(P=2+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}=2+\frac{xz+yz}{z^2}+\frac{xy+xz}{x^2}+\frac{zy+xy}{y^2}\)\(=2-\left(\frac{z}{x}+\frac{x}{y}+\frac{y}{z}\right)\)\(=2-\frac{xy+yz+zx}{xyz}=2-\frac{0}{xyz}=2\)

Vậy P=8 khi x=y=z

      P=2 khi xy+yz+zx=0

PHƯƠNG LOVELY
28 tháng 9 2016 lúc 20:35

kho nhi

Phạm Hữu Nam chuyên Đại...
28 tháng 9 2016 lúc 20:38

=0 đó bạn

Hàn Vũ
Xem chi tiết
Đỗ Thị Kim Tiên
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2018 lúc 8:49

Áp dụng BĐT AM-GM ta có:

\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\frac{\left(x+1\right)\left(y+1\right)^2}{xy+x+y+1}=\frac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=y+1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\ge x+y+z+3=6\)

Dấu "=" <=> x=y=z=1

Xem chi tiết

help me ai nhanh nhất mik tích cho

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 18:39

a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)

\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)

Nguyễn Thành
Xem chi tiết
Nguyệt
16 tháng 12 2018 lúc 19:45

\(\left(2x+1\right)^2-\left(4x-3\right).\left(x+7\right)-22\)

\(=4x^2+4x+1-4x^2-28x+3x+21-22\)

\(=-21x\)

mấy câu khác tương tự

titanic
Xem chi tiết
Neet
Xem chi tiết
Lightning Farron
9 tháng 6 2017 lúc 23:13

Sửa đề \(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y}+1}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}=\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x\cdot z\cdot xz}+1}\ge\dfrac{\left(x+1\right)\left(y+1\right)^2}{x+z+xz+1}\)

\(=\dfrac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(z+1\right)}=\dfrac{\left(y+1\right)^2}{z+1}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\dfrac{\left(z+1\right)^2}{x+1};\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge\dfrac{\left(x+1\right)^2}{y+1}\)

Cộng theo vế 3 BĐT trên rồi áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{x+y+z+3}=x+y+z+3=VP\)