Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

x,y,z>0.Prove that:

\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)

Lightning Farron
9 tháng 6 2017 lúc 23:13

Sửa đề \(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}+\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y}+1}+\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x^2z^2}+1}=\dfrac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{x\cdot z\cdot xz}+1}\ge\dfrac{\left(x+1\right)\left(y+1\right)^2}{x+z+xz+1}\)

\(=\dfrac{\left(x+1\right)\left(y+1\right)^2}{\left(x+1\right)\left(z+1\right)}=\dfrac{\left(y+1\right)^2}{z+1}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}\ge\dfrac{\left(z+1\right)^2}{x+1};\dfrac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge\dfrac{\left(x+1\right)^2}{y+1}\)

Cộng theo vế 3 BĐT trên rồi áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{x+y+z+3}=x+y+z+3=VP\)


Các câu hỏi tương tự
Xem chi tiết
Hoa Hồng Nhung
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Thanh Trà
Xem chi tiết
duy Nguyễn
Xem chi tiết
Alisa Chuppy
Xem chi tiết
Hà Annh
Xem chi tiết
Huyen Nguyen
Xem chi tiết
Trúc Giang
Xem chi tiết