Phân tích thành nhân tử(Phương pháp ẩn phụ):
a)(x^2+x)^2+4(x^2+x)-12
b)(x+1)(x+2)(x+3)(x+4)-24
Phân tích thành nhân tử(Phương pháp đặt ẩn phụ):
a)(x^2+x)^2+4(x^2+x)-12
b)(x^2+x+1)(x^2+x+2)-12
c)(x+1)(x+2)(x+3)(x+4)-24
phân tích đa thức sau thành nhân tử bằng phương pháp đặt ẩn phụ
c) (x2+x+1)(x2+x+2)-12
d)(x+2)(x+3)(x+4)(x+5)-24
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= x4 + 10x3 + 35x2 + 50x + 24 - 24
= x4 + 10x3 + 35x2 + 50x
( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24
= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24
Đặt t = x2 + 5x + 5
=> ( t - 1 ). ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= ( t - 5 ). ( t + 5 )
= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )
= ( x2 + 5x ) . ( x2 + 5x + 10 )
= x. ( x + 5 ) . ( x2 + 5x + 10 )
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ:
a) 36 x 6 − 24 x 3 + 4 ;
b) ( x 2 - 1 ) 2 - 18(x + l)(x -1);
c) (x + l)(x + 3)(x + 5)(x + 7) +15;
d) ( x 2 + x + 4 ) 2 + 8x( x 2 + x + 4) + 15 x 2 .
phân tích đa thức thành nhân tử chung = phương pháp đặt ẩn phụ
a, C= (x^2+x+1)(x^2+x+2)-12
b, D= (x+2)(x+3)(x+4)(x+5)-24
c, E=(x+a)(x+2a)(x+3a)(x+4a)+a^4
d, F= (x^2+y^2+z^2)(x+y+z)^2+(xy+yz+xz)^2
Hai câu đầu tham khảo
Câu hỏi của Bangtan Sonyeondan - Toán lớp 8 - Học toán với OnlineMath
c) \(E=\left(x+a\right)\left(x+2a\right)\left(a+3a\right)\left(x+4a\right)+a^4\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(a+3a\right)+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(a^2+5ax+6a^2\right)+a^4\)(1)
Đặt \(x^2+5ax+4a^2=t\)
\(\Rightarrow\left(1\right)=t\left(t+2a^2\right)+a^4\)
\(=t^2+2a^2t+a^4=\left(t+a^2\right)^2\)(2)
Mà \(x^2+5ax+4a^2=t\)
Nên \(\left(2\right)=\left(x^2+5ax+5a^2\right)^2\)
phân tích đa thức thành nhân tử bằng phương pháp ẩn phụ
a) x^4 -x^3 - 13x^2 - 31x - 20
b) x^4 - 2x^2 - 2x^2 - 3x^2 + 16 x + 6
a: \(=x^4-5x^3+4x^3-20x^2+7x^2-35x+4x-20\)
\(=\left(x-5\right)\left(x^3+4x^2+7x+4\right)\)
\(=\left(x-5\right)\left(x^3+x^2+3x^2+3x+4x+4\right)\)
\(=\left(x-5\right)\left(x+1\right)\left(x^2+3x+4\right)\)
b: Đề sai rồi bạn
Phân tích thành nhân tử:(Phương pháp đặt ẩn phụ)
a)x(x+1)(x+2)(x+3)+1
b)(x^2+x+1)(x^2+3x+1)+x^2
a)x(x+1)(x+2)(x+3)+1
= (x2 + 3x)(x2 + 3x + 2) + 1
Đặt x2 + 3x = t, ta có:
t(t + 2) + 1
= t2 + 2t + 1
= (t + 1)2
= (x2 + 3x)2
b)(x^2+x+1)(x^2+3x+1)+x^2
Đặt x2 + x + 1 = t, ta có:
t(t - 2x) + x2
= t2 - 2xt + x2
= (t - x)2
= (x2 + x + 1 - x)2
= (x2 + 1)2
1 .phân tích đa thức thành nhân tử bằng phương pháp ẩn phụ
x^4 - x^3- 9x^2 -16X - 10 - b
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
a, (x^2 - 8)^2 + 36
b, 81. x^4 + 4