(x2 + x)2 + 4(x2 + x) - 12
Đặt x2 + x = t, ta có:
t2 + 4t - 12
= t2 - 2t + 6t - 12
= t(t - 2) + 6(t - 2)
= (t - 2)(t + 6)
= (x2 + x - 2)(x2 + x + 6)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24
Đặt x2 + 5x + 4 = t, ta có:
t(t + 2) - 24
= t2 + 2t - 24
= t2 - 4t + 6t - 24
= t(t - 4) + 6(t - 4)
= (t - 4)(t + 6)
= (x2 + 5x + 4 - 4)(x2 + 5x + 4 + 6)
= x(x + 5)(x2 + 5x + 10)