Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 1:21

I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:

\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)

Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình AB:

\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)

B là giao điểm AB và BC nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)

I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 14:59

a: Xét ΔSAD có M,P lần lượt là trung điểm của SA,SD

=>MP là đường trung bình

=>MP//AD

mà \(AD\subset\left(ABCD\right)\) và MP không thuộc mp(ABCD)

nên MP//(ABCD)

Xét ΔSBD có

N,P lần lượt là trung điểm của SB,SD

=>NP là đường trung bình

=>NP//BD

mà \(BD\subset\left(ABCD\right)\) và NP không thuộc mp(ABCD)

nên NP//(ABCD)

NP//(ABCD)

MP//(ABCD)

NP,MP\(\subset\left(MNP\right)\)

Do đó: (MNP)//(ABCD)

b: Xét ΔDBS có

P,I lần lượt là trung điểm của DS,DB

=>PI là đường trung bình

=>PI//SB

mà \(SB\subset\left(SBC\right)\) và PI không thuộc mp(SBC)

nên PI//(SBC)

MP//AD

AD//BC

Do đó: MP//BC

mà \(BC\subset\left(SBC\right)\) và MP không thuộc mp(SBC)

nên MP//(SBC)

MP//(SBC)

PI//(SBC)

MP,PI\(\subset\)(MPI)

Do đó: (MPI)//(SBC)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 19:05

a: Xét ΔSAD có

\(\dfrac{SM}{SA}=\dfrac{SP}{SD}=\dfrac{1}{2}\)

nên MP//AD

MP//AD

AD\(\subset\)(ABCD)

MP không nằm trong mp(ABCD)

Do đó: MP//(ABCD)

Xét ΔSAB có \(\dfrac{SM}{SA}=\dfrac{SN}{SB}=\dfrac{1}{2}\)

nên MN//AB
MN//AB

\(AB\subset\left(ABCD\right)\)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

MP//(ABCD)

MN//(ABCD)

MN,MP cùng nằm trong mp(MNP)

Do đó: (MNP)//(ABCD)

b: Xét ΔSDB có \(\dfrac{DP}{DS}=\dfrac{DI}{DB}\)

nên PI//SB

PI//SB

SB\(\subset\)(SBC)

PI không nằm trong mp(SBC)

Do đó: PI//(SBC)

Xét ΔASC có \(\dfrac{AI}{AC}=\dfrac{AM}{AS}=\dfrac{1}{2}\)

nên MI//SC

MI//SC

SC\(\subset\)(SBC)

MI không nằm trong mp(SBC)

Do đó: MI//(SBC)

PI//(SBC)

MI//(SBC)

MI,PI cùng nằm trong mp(MPI)

Do đó: (SBC)//(MPI)

Lê Hữu Minh
Xem chi tiết
bao han
Xem chi tiết
cach cach dan gian
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 11:10

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Nguyễn Hoài Thương
Xem chi tiết
Buddy
20 tháng 3 2021 lúc 22:20

Phương trình đường thẳng qua O và song song AB có dạng: x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y−6=0x−y=0 ⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1) là 1 vtpt có dạng:

1(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {x−y+5=0x+y−3=0 ⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 19:02

a: Xét ΔSAC có

I,H lần lượt là trung điểm của SC,SA

=>IH là đường trung bình của ΔSAC

=>IH//AC

IH//AC

AC\(\subset\)(ABCD)

IH không nằm trong mp(ABCD)

Do đó: IH//(ABCD)

b: XétΔSCD có

I,K lần lượt là trung điểm của SC,SD

=>IK là đường trung bình của ΔSCD

=>IK//CD

IK//CD

CD\(\subset\)(ABCD)

IK không nằm trong mp(ABCD)

Do đó: IK//(ABCD)

c: IK//(ABCD)

HI//(ABCD)

IK,HI nằm trong mp(HIK)

Do đó: (HIK)//(ABCD)

d: (HIK)//(ABCD)

=>BD//(HIK)