cho sin alpha + cos alpha = 7/5. Tính tan alpha
Cho sin\(\alpha\) + cos\(\alpha\) =\(\sqrt{2}\)
a, Tính cos\(\alpha\), sin\(\alpha\), tan\(\alpha\), cot\(\alpha\).
b, Tính F = \(sin^5\alpha+cos^5\alpha\)
1/ Cho \(cot\alpha=\sqrt{5}\) . Tính \(C=sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha\)
2/ Cho \(tan\alpha=3\) . Tính \(B=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)
1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)
\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)
\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)
1: \(cota=\sqrt{5}\)
=>\(cosa=\sqrt{5}\cdot sina\)
\(1+cot^2a=\dfrac{1}{sin^2a}\)
=>\(\dfrac{1}{sin^2a}=1+5=6\)
=>\(sin^2a=\dfrac{1}{6}\)
\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)
\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)
2: tan a=3
=>sin a=3*cosa
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)
\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)
\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)
\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)
\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)
Cho \(sin\alpha+cos\alpha=\dfrac{7}{5}\). Tính \(tan\alpha\)
$\begin{cases}sinα+cosα=\dfrac{7}{5}\\sin^2α+cos^2α=1\\\end{cases}$
`<=>` $\begin{cases}sinα+cosα=\dfrac{7}{5}\\(sinα+cosα)^2-2sinαcosα=1\\\end{cases}$
`<=>` $\begin{cases}sinα+cosα=\dfrac{7}{5}\\sinα.cosα=\dfrac{12}{25}\\\end{cases}$
`<=>` \(\left\{{}\begin{matrix}\left[{}\begin{matrix}sinα=\dfrac{4}{5}\\cosα=\dfrac{3}{5}\end{matrix}\right.\\\left[{}\begin{matrix}sinα=\dfrac{3}{5}\\cosα=\dfrac{4}{5}\end{matrix}\right.\end{matrix}\right.\)
`=>` \(\left[{}\begin{matrix}tanα=\dfrac{3}{4}\\tanα=\dfrac{4}{3}\end{matrix}\right.\)
Vậy...
Ta có: \(\left(\sin\alpha+\cos\alpha\right)^2=\dfrac{49}{25}\)
\(\Leftrightarrow2\cdot\sin\alpha\cdot\cos\alpha=\dfrac{49}{25}-1=\dfrac{24}{25}\)
Ta có: \(\left(\sin\alpha-\cos\alpha\right)^2\)
\(=\sin^2\alpha+\cos^2\alpha-\dfrac{24}{25}\)
\(=1-\dfrac{24}{25}=\dfrac{1}{25}\)
\(\Leftrightarrow\sin\alpha-\cos\alpha=\dfrac{1}{5}\)
mà \(\sin\alpha+\cos\alpha=\dfrac{7}{5}\)
nên \(2\cdot\sin\alpha=\dfrac{8}{5}\)
hay \(\sin\alpha=\dfrac{4}{5}\)
\(\Leftrightarrow\cos\alpha=\dfrac{7}{5}-\dfrac{4}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
Cho \(\tan\alpha-5\cot\alpha+4=0.\). Tính \(A=\frac{4\sin\alpha+2\cos\alpha}{3\sin\alpha-\cos\alpha}\)
\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)
\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)
\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)
Cho \(tan\alpha=\dfrac{7}{24}\)Tính \(sin\alpha,cos\alpha,cot\alpha\)
-Dựa vào cthuc \(tana.cotga=1\)
=>cotga=?
-dựa vào cthuc \(1+tan^2a=\dfrac{1}{cos^2a}\)
=>cosa=?
-dựa vào \(tana=\dfrac{sina}{cosa}\)
=>sina=?
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{24}{7}\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{576}{625}\Rightarrow cos\alpha=\dfrac{24}{25}\)
\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\Rightarrow sin^2\alpha=\dfrac{49}{625}\Rightarrow cos\alpha=\dfrac{7}{25}\)
Cho \(0< \alpha< 90\) độ. Không dùng máy tính hãy tính :
\(a,\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\) biết \(\tan\alpha=\frac{1}{3}\)
\(b,\tan\alpha\)biết \(\sin\alpha+\cos\alpha=\frac{7}{5}\)
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
Cho \(\tan\alpha=\frac{3}{5}\)
Tính: \(\frac{\sin^3\alpha+\cos^3\alpha}{2\sin\alpha.\cos^2\alpha+\cos\alpha.\sin^2\alpha}\)
Cho tan\(\alpha\)= 2 . Tính B =\(\dfrac{\sin\alpha-\cos\alpha}{\sin^3\alpha+3\cos^3\alpha+2\sin\alpha}\)