Cho hàm số y = x^3 +3x + m
Tìm m để hàm số lẻ.
TÌM THAM SỐ MLÀ SỐ THỰC CỦA ĐỂ HÀM SỐ Y = 1/3X³ - MX² + (M² – 4)X + 3 ĐẠT CỰC ĐẠI TẠI X = 3. A. M = -7 B. M = 1 C. MTÌM THAM SỐ MLÀ SỐ THỰC CỦA ĐỂ HÀM SỐ Y = 1/3X³ - MX² + (M² – 4)X + 3 ĐẠT CỰC ĐẠI TẠI X = 3. A. M = -7 B. M = 1 C. M = -1 D. M = 5. = -1 D. M = 5.
Cho hàm số y = x^3 +3x + m
Tìm m để hàm số lẻ.
\(f\left(-x\right)=\left(-x\right)^3+3\cdot\left(-x\right)+m\)
\(=-x^3-3x+m\)
Để hàm số lẻ thì f(-x)=-f(x)
=>m=-m
=>2m=0
hay m=0
cho hàm số y=3x3-5x=f(x)
chứng minh hàm số là hàm số lẻ với mọi x
Cho hàm số y = - 3x + 2 (d) a) Vẽ đồ thị (d) của hàm số trên. b) Tìm m để đồ thị hàm số y = (m+1)x - 3 song song với đồ thị hàm số y = - 3x + 2.
a:
b: Để đồ thị hàm số y=(m+1)x-3 song song với đồ thị hàm số y=-3x+2 thì \(\left\{{}\begin{matrix}m+1=-3\\2\ne-3\left(đúng\right)\end{matrix}\right.\)
=>m+1=-3
=>m=-4
Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)
\(\Leftrightarrow2m\ne3\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)
\(\Leftrightarrow2m>3\)
hay \(m>\dfrac{3}{2}\)
Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)
b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)
Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3
a. Tìm m để hàm số đồng biến.
Để hàm số trên đồng biến. => 2m-3 > 0
<=> 2m > 3
<=> m > 3/2
b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5
Để đồ thị hàm số (1) song song đường thẳng y = 3x - 5
=> 2m-3 = 3 và -5m+1 khác - 5
<=> m = 3 và m khác 6/5
<=> m = 3 (tm)
c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox
Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)
=> tan a = |3|
=> tan a = 3
=> góc a = 71o 33'
Cho hàm số y= (m-1)x+2m +1 (1)
a) Tìm hàm số đồng biến
b)Vẽ đô thị hàm số (1) khi m=3
c) Tìm m để đô thị hàm số (1) song song vs S
dt' y= 3x+1
e) Tìm m để hàm số (1) vuông góc vs đt y trùng =1/2
a, để hàm số đồng biến thì\(m-1>0\Rightarrow m>1\)
b, khi m=3 thì \(y=\left(3-1\right)x+2.3+1\Rightarrow y=2x+7\)
bạn tự vẽ đồ thị hàm số trên nhé do trên này khó vẽ
c, để đồ thị hàm số (1) song song vs S
dt' y= 3x+1 thì \(\left\{{}\begin{matrix}m-1=3\\2m+1\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\m\ne1\end{matrix}\right.\Leftrightarrow m=4\)
e, không rõ đề
Cho 2 hàm số bậc nhất:
y = \(\left(m-\dfrac{2}{3}\right)x+1\)
y = (2 - m)x - m
Tìm m để hai đường thẳng trên:
a) Cắt nhau.
b) Song song.
c) Cắt nhau tại điểm có hoành độ bằng 4.
d) Cắt nhau tại 1 điểm trên trục tung.
e) Cắt nhau tại 1 điểm trên trục hoành.
a:
Để (d1): y=(m-2/3)x+1 là hàm số bậc nhất thì m-2/3<>0
=>m<>2/3
Để (d2): y=(2-m)x-m là hàm số bậc nhất thì 2-m<>0
=>m<>2
Để hai đường thẳng cắt nhau thì \(m-\dfrac{2}{3}< >2-m\)
=>\(2m< >\dfrac{2}{3}+2=\dfrac{8}{3}\)
=>\(m< >\dfrac{4}{3}\)
b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}m-\dfrac{2}{3}=2-m\\-m< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=2+\dfrac{2}{3}=\dfrac{8}{3}\\m< >-1\end{matrix}\right.\Leftrightarrow m=\dfrac{4}{3}\)
c: Thay x=4 vào y=(m-2/3)x+1, ta được:
\(y=4\left(m-\dfrac{2}{3}\right)+1=4m-\dfrac{8}{3}+1=4m-\dfrac{5}{3}\)
Thay x=4 và y=4m-5/3 vào y=(2-m)x-m, ta được:
\(4\left(2-m\right)-m=4m-\dfrac{5}{3}\)
=>\(8-5m=4m-\dfrac{5}{3}\)
=>\(-9m=-\dfrac{5}{3}-8=-\dfrac{29}{3}\)
=>\(m=\dfrac{29}{27}\)
d: Để hai đường cắt nhau tại 1 điểm trên trục tung thì \(\left\{{}\begin{matrix}-m=1\\m-\dfrac{2}{3}< >2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\2m< >\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow m=-1\)
e: Để hai đường cắt nhau tại trục hoành thì
\(\left\{{}\begin{matrix}m-\dfrac{2}{3}< >2-m\\-\dfrac{1}{m-\dfrac{2}{3}}=\dfrac{-\left(-m\right)}{2-m}=\dfrac{m}{2-m}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m< >\dfrac{8}{3}\\-1\left(2-m\right)=m\left(m-\dfrac{2}{3}\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{2}{3}m=-2+m=m-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\m^2-\dfrac{5}{3}m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >\dfrac{4}{3}\\3m^2-5m+6=0\end{matrix}\right.\)
=>\(m\in\varnothing\)
Tính các giá trị của tham số m để hàm số y = f(x) = (m2 – 3)cos10x + sin2021x là hàm số lẻ?
\(D=R\)
Để hàm số f(x) là hàm số lẻ
\(\Leftrightarrow f\left(-x\right)=-f\left(x\right),\forall x\in D\)
\(\Leftrightarrow\left(m^2-3\right)cos\left(-10x\right)+sin\left(-2021x\right)=-\left(m^2-3\right)cos10x-sin2021x,\forall x\)
\(\Leftrightarrow\left(m^2-3\right)cos10x-sin2021x=-\left(m^2-3\right)cos10x-sin2021x,\forall x\)
\(\Leftrightarrow\left(m^2-3\right)cos10x=0,\forall x\)
\(\Leftrightarrow m^2-3=0\)
\(\Leftrightarrow m=\pm\sqrt{3}\)
Vậy...
cho hàm số y=x+3, y=-x-1, y=√3x -m-2. Tìm m để các đồ thị hàm số trên là các đường thẳng đồng quy