tim x biet
(x2 - 4)( x2 - 10) = 72
Cau 1:
Tim x, biet: 1-4+7-10+.............-x=-75
Cau 2:
Cho x1, x2, x3, x4, x5 thuộc Z
Biết x1+ x2 + x3 + x4 + x5=0
và x1 + x2=x3+ x4= x4 + x5 =2
Tinh x3, x4 , x5
Cau 3: Tim x biet
(x+7+1) chia het cho (x+7)
Gi ải các phương trình sau (Đặt ẩn phụ)
a)( x2+x)2+4(x2+x)-12=0
b) (x2+2x+3)-9(x2+2x+3)+18=0
c) (x-2)(x+2)(x2-10)=72
a: Đặt \(a=x^2+x\)
Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)
=>\(a^2+6a-2a-12=0\)
=>a(a+6)-2(a+6)=0
=>(a+6)(a-2)=0
=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))
=>\(\left(x+2\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
b:
Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)
Đặt \(b=x^2+2x+3\)
Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)
=>\(b^2-3b-6b+18=0\)
=>b(b-3)-6(b-3)=0
=>(b-3)(b-6)=0
=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)
=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)
=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)
c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)
=>\(x^4-14x^2+40-72=0\)
=>\(x^4-14x^2-32=0\)
=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)
=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)
=>x2=16
=>x=4 hoặc x=-4
tim x
2^x . 2^x+3 = 72
\(2^x+2^{x+3}=72\)
\(\Rightarrow2^x\cdot\left(1+2^3\right)=72\)
\(\Rightarrow2^x\cdot9=72\)
\(\Rightarrow2^x=72:9\)
\(\Rightarrow2^x=8\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
tim x biet
(x2 - 4)( x2 - 10) = 72
(x2-4)(x2-10)=72
=>x4-14x2+40=72
=>x4-14x2-32=0
=>(x-4)(x3+4x2+2x+8)=0
=>(x-4)(x+4)(x2+2)=0
=> (x-4) = 0 hoặc (x+4)=0 hoặc (x2+2)=0
=> x = 4 hoặc x=-4
Tim X
3) -12 + (2x – 9) + x= 0
4) 11 + (15 - x) = 1
5) 4 - (27 - 3) = x - (13 - 4)
6) 8 - (x - 10) = 23 - (- 4 +12)
7) 105 – 5(10 – 5x) = -20
8) (x -1)(8-2x)(3x+123) = 0
9) (x2 - 25)(x+ 10) = 0
10) x(x2+5) =
3) \(-12+2x-9+x=0\\ -21+3x=0\\ 3x=21\\ x=7\)
4)
\(11+\left(15-x\right)=1\)
\(15-x=1-11\)
\(15-x=-10\)
\(x=15-\left(-10\right)\)
\(x=25\)
5)
\(4-\left(27-3\right)=x-\left(13-4\right)\)
\(4-24=x-9\)
\(x-9=-20\)
\(x=-20+9\)
\(x=-11\)
\(3.-12+\left(2x-9\right)+x=0.\)
\(\Leftrightarrow-12+2x-9+x=0.\Leftrightarrow3x=21.\Leftrightarrow x=7.\)
Vậy \(x=7.\)
\(4.11+\left(15-x\right)=1.\Leftrightarrow11+15-x=1.\Leftrightarrow26-x=1.\Leftrightarrow x=25.\)
Vậy \(x=25.\)
\(5.4-\left(27-3\right)=x-\left(13-4\right).\Leftrightarrow4-24=x-9.\Leftrightarrow-20=x-9.\Leftrightarrow x=-11.\)
Vậy \(x=-11.\)
\(6.8-\left(x-10\right)=23-\left(-4+12\right).\Leftrightarrow8-x+10=23-8.\Leftrightarrow18-x=15.\Leftrightarrow x=3.\)
Vậy \(x=3.\)
\(7.105-5\left(10-5x\right)=-20.\Leftrightarrow105-50+25x=-20.\Leftrightarrow25x=-75.\Leftrightarrow x=-3.\)
Vậy \(x=-3.\)
\(8.\left(x-1\right)\left(8-2x\right)\left(3x+123\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\8-2x=0.\\3x+123=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=4.\\x=-41.\end{matrix}\right.\)
Vậy \(x\in\left\{1;4;-41\right\}.\)
\(9.\left(x^2-25\right)\left(x+10\right)=0.\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+10\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0.\\x+5=0.\\x+10=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5.\\x=-5.\\x=-10.\end{matrix}\right.\)
Vậy \(x\in\left\{5;-5;-10\right\}.\)
\(10.x\left(x^2+5\right)=0.\Leftrightarrow x=0.\)
cho hai đại lượng tỉ lệ nghịch x và y,x1,x2 là hai giá trị bất kì của x,y1,y2 là hai giá trị tương ứng của y.
a tinh y1,y2 biet 2y1=3y2=-26,x1=3,x2=2
b tinh x1,y2 biet 3x1-2y2=32,x2=-4,y1=-10
Cho PT (m+1)x^2+2mx+m-1=0. Tim gia tri cua m de PT co 2 nghiem phan biet x1, x2 sao cho x1^2+x2^2=5
PT có 2 nghiệm phân biệt
\(\Leftrightarrow\text{Δ}>0\Leftrightarrow\left(2m\right)^2-4.\left(m+1\right)\left(m-1\right)>0\)
\(\Leftrightarrow4m^2-4\left(m^2-1\right)>0\Leftrightarrow4>0\)(luôn đúng)
Vậy PT luôn có 2 nghiệm phân biệt
Theo hệ thức Viét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{m+1}\\x_1.x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Mà theo GT thì ta có:
\(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=5\)
\(\Leftrightarrow\left(\dfrac{-2m}{m+1}\right)^2-2.\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-\dfrac{2\left(m-1\right)}{m+1}=5\)
\(\Leftrightarrow\dfrac{1}{m+1}\left[\dfrac{4m^2}{m+1}-2\left(m-1\right)\right]=5\)
\(\Leftrightarrow\dfrac{2m^2+2}{m^2+2m+1}=5\)
\(\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{3}\\m=-3\end{matrix}\right.\)
G= (x + a)(x + 2a)(x + 3a)(x + 4a) + a4
E = (3x + 2)(3x – 5)(x – 1)(9x + 10) + 24x2
F = 4(x2 + 15x + 50)(x2 + 18x + 72) – 3x2
D = (3x2 – x - 2)(27x2 – 15x – 50) + 24x2
Các bn giúp mk nha, mk đg cần gấp, tksss
e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)
\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)
\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)
\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)
\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)
\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)
tim cac so x1,x2,...,xn-1 ,xn biet rang x1/a1=x2/a2=...=xn/an va x1+x2+...+xn=c
vao thong tin tai khoan o cho hinh tam giac ben canh ten cua ban roi an vao doi anh hien thi .xong