Cho chóp SABCD , ABCD là hình thoi tâm O ,2 tam giác SAB và SAC vuông tại A , SA=a AC=\(2a\sqrt{3}\) . c/m AH vuông góc vs (SBC). H là đường cao...
mọi ngưới giúp mk vs!!!
cho hình chóp S.ABCD, đáy là hình vuông,cạnh a. tâm giác SAB và tam giác SAC vuông tại A. góc giữa SC và(ABCD) bằng 30 độ.
a) chứng minh SA vuông góc với (ABCD)
b)cho AH là đường cao tâm giác SAB, chứng minh AH vuông góc với SC
c)góc giữa SC và (SAB)
cho hình chóp SABCD có SA vuông góc (ABCD), ABCD là hình vuông
a.cm: BD vuông góc (SAC)
b.cm: tam giác SBC, tam giác SCD vuông
c.H là chân đường cao kẻ từ A lên SB. cm AH vuông góc (SBC)
a: BD\(\perp\)AC(ABCD là hình vuông)
BD\(\perp\)SA(SA\(\perp\)(ABCD))
AC,SA cùng thuộc mp(SAC)
Do đó: BD\(\perp\)(SAC)
b: BC\(\perp\)BA(ABCD là hình vuông)
BC\(\perp\)SA(SA\(\perp\)(ABCD))
BA,SA cùng thuộc mp(SAB)
Do đó: BC\(\perp\)(SAB)
=>BC\(\perp\)BS
=>ΔSBC vuông tại B
CD\(\perp\)AD(ABCD là hình vuông)
CD\(\perp\)SA(SA\(\perp\)(ABCD))
Do đó: CD\(\perp\)(SAD)
=>CD\(\perp\)SD
=>ΔSDC vuông tại D
Cho hình chóp SABCD có đáy là hình thang vuông tại A và D. AB=2a, AD=DC=a. Kẻ AH vuông góc với SC (H thuộc SC). E là trung điểm của AB. Sa vuông góc với (ABCD) và SA=a căn 3. Tính góc giữa a)(SBC) và (ABCD) b)(SAD) và (SAC) c)(SBC) và (SCD)
Cho hình chóp SABCD, có đáy là hình vuông tâm O. SA ⊥ (ABCD). Gọi H,I,K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD.
a) Cm: BC⊥(SAB), CD⊥(SAD), BD⊥(SAC)
b) Cm: AH⊥(SBC), AK⊥(SCD)
c) Cm: HK⊥(SAC). Từ đó suy ra HK⊥AI
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) ; mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)
\(\left\{{}\begin{matrix}CD\perp\left(SAD\right)\Rightarrow CD\perp AK\\AK\perp SD\end{matrix}\right.\) \(\Rightarrow AK\perp\left(SCD\right)\)
\(\left\{{}\begin{matrix}AH\perp\left(SBC\right)\Rightarrow AH\perp SC\\AK\perp\left(SCD\right)\Rightarrow AK\perp SC\end{matrix}\right.\) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp HK\)
Mặt khác theo tính đối xứng hình vuông \(\Rightarrow HK||BD\Rightarrow HK\perp AC\Rightarrow HK\perp\left(SAC\right)\)
\(AI\in\left(SAC\right)\Rightarrow HK\perp AI\)
1/ Cho hình chóp S.ABC: SA vuông góc với (ABC), ΔABC vuông tại B, AB=4a, BC=3a, SA=\(a\sqrt{2}\). H là chân d cao kẻ từ A xuống SA.
a. CMR: BC vuông góc với (SAB)
b. Tính d(B;(SAC))
c. Tính d(AH;SC)
2/ Cho hình chóp S.ABCD: ABCD là hình vuông tâm O. SO vuông góc với (ABCD), AB=2a, SO=4a
a. CMR: BD vuông góc với (SAC)
b. Tính d(O;(SCD))
c. Tính d(AB;SD)
CỨU E VS M.N ƠI, mai kt 15' nx mà thật sự ko bt lm, giúp e vs, cảm ơn ạ
1:
a: BC vuông góc BA
BC vuông góc SA
=>BC vuông góc (SAB)
b: Kẻ BK vuông góc AC, BH vuông góc SK
=>BH=d(B;(SAC))
\(AC=\sqrt{BA^2+BC^2}=5a\)
AK=(4a)^2/5a=3,2a
BK=4a*3a/5a=2,4a
\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)
SK=căn 2a^2+10,24a^2=a*3căn 34/5
BK=2,4a
SK^2+BK^2=SB^2
nên ΔSKB vuông tại K
=>K trùng với H
=>d(B;(SAC))=BK=2,4a
Cho hình chóp SABCD có đáy là hình thang vuông tại A, AB=BC=a; AD= 2a; SA vuông với đáy; SA = a. M,N lần lượt là trung điểm của SB, CD. Tính:
a, (SC, đáy)
b, (SB, SAC)
c, (SD, SAB)
d, (SN, SAC)
e, (SA, SCD)
f, (SA, SBC)
h, (MN, SCA) (xác định góc)
a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)
(SC;(ABCD))=(CS;CA)=góc SCA
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
b:
Kẻ BH vuông góc AC tại H
(SB;SAC)=(SB;SH)=góc BSH
\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)
AH=AC/2=a*căn 2/2
=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)
\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)
\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)
=>góc BSH=30 độ
c: (SD;(SAB))=(SD;SA)=góc ASD
tan ASD=AD/AS=2
nên góc ASD=63 độ
Cho hình chóp SABCD đáy là hình vuông tâm O cạnh a. SA=a căn 3. SA vuông góc với đáy. Tính góc a)(SBD) và (ABCD) b)(SBD) và (SAB) c)(SBC) và (ABCD) d)(SCD) và (ABCD)
cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a. SA vuông góc với mặt phẳng (ABCD). SA=a.căn 2. Gọi AH là đường cao của tam giác SAB.
a. CM: các mặt bên của hình chóp là hình vuông
b. Tính AH và tỉ số SH/SB
c. TÍnh góc giữa SC và mp( SAD).
d. Gọi M là trung điểm AB. (P) là mặt phẳng qua M và vuông góc với SB. Thiết diện hình chóp vs (P) là gì. Tính diện tích của thiết diện
Giúp mik vs
Cho hình chóp SABCD có đáy ABCD là hcn. E là điểm trên cạnh AD sao cho BE vuông góc vs AC tại H và AB > AE. 2 mp (SAC) và (SBE) cùng vuông góc vs mp (ABCD). Góc tạo bởi SB và mp(SAC) = 30. Cho AH= \(\frac{2a\sqrt{5}}{5}\), BE=\(a\sqrt{5}\) . Tính thể tích khối SABCD và khoảng cách giữa SB,CD
ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF
kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)
\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)
(SAB) chứa SB và song song CD
\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))
có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)
\(\Rightarrow CM=5HK=a\sqrt{15}\)
Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)
\(\begin{cases}\left(SAC\right)\perp\left(ABCD\right)\\\left(SBE\right)\perp\left(ABCD\right)\\\left(SBE\right)\cap\left(SAC\right)=SH\end{cases}\) \(\Rightarrow SH\perp\left(ABCD\right)\)
\(\begin{cases}BE\perp SH\left(SH\perp\left(ABCD\right)\right)\\BE\perp AC\end{cases}\) \(\Rightarrow BE\perp\left(SAC\right)\)
vậy SH là hình chiếu của SB lên (SAC) . vậy \(\widehat{BSH}=30^o\)
đặt AB=x
ta có : \(AE=\sqrt{BE^2-AB^2}=\sqrt{5a^2-x^2}\)
lại có : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}\Leftrightarrow\frac{5}{4a^2}=\frac{1}{x^2}+\frac{1}{5a^2-x^2}\Leftrightarrow x^4-5a^2x^2+a^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=a^2\\x^2=4a^2\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=a\\x=2a\end{array}\right.\) . loại x=a vì AE=2a>a=AB
Vậy AB=2a
\(BH=\sqrt{AB^2-AH^2}=\frac{4a}{\sqrt{5}}\)
\(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BC^2}\Leftrightarrow\frac{5}{16a^2}=\frac{1}{4a^2}+\frac{1}{BC^2}\Leftrightarrow BC=4a\)
\(S_{ABCD}=AB.BC=8a^2\)
Tam giác SBH vuông tại H nên \(SH=BH.\cot\widehat{BSH}=\frac{4a}{\sqrt{5}}.\sqrt{3}=\frac{4a\sqrt{15}}{5}\)
\(V_{SABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{4a\sqrt{15}}{5}.8a^2=\frac{32a^3\sqrt{15}}{15}\)