Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

cho hình chóp SABCD có SA vuông góc (ABCD), ABCD là hình vuông

a.cm: BD vuông góc (SAC)

b.cm: tam giác SBC, tam giác SCD vuông

c.H là chân đường cao kẻ từ A lên SB. cm AH vuông góc (SBC)

a: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

b: BC\(\perp\)BA(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

BA,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

=>BC\(\perp\)BS

=>ΔSBC vuông tại B

CD\(\perp\)AD(ABCD là hình vuông)

CD\(\perp\)SA(SA\(\perp\)(ABCD))

Do đó: CD\(\perp\)(SAD)

=>CD\(\perp\)SD

=>ΔSDC vuông tại D

 


Các câu hỏi tương tự
Nguyễn Vân
Xem chi tiết
lê minh trang
Xem chi tiết
Lê Ánh ethuachenyu
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Thuytrang Vu
Xem chi tiết
Julian Edward
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Binh Le Huu Thanh
Xem chi tiết
Vũ Nam
Xem chi tiết