Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sắc màu
Xem chi tiết
Cô Hoàng Huyền
31 tháng 8 2018 lúc 9:31

a) Ta thực hiện phép chia \(3x^3+13x^2-7x+5\) cho \(3x-2\). Khi đó ta có:

\(A=\frac{3x^3+13x^2-7x+5}{3x-2}=3x^2+5x+1+\frac{7}{3x-2}\)

Nếu x nguyên thì \(3x^2+5x+1\in\text{Z}\) nên để A nguyên thì \(\frac{7}{3x-2}\in Z\)

\(\Rightarrow3x-2\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;3\right\}\)

b) Ta có: \(B=\frac{2x^5+4x^4-7x^3-44}{2x^2-7}=\left(x^3+2x^2+7\right)+\frac{5}{2x^2-7}\)

Để B nguyên thì \(\frac{5}{2x^2-7}\in Z\Rightarrow2x^2-7\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-1;1;2;-2\right\}\)

Trọng Đào Duy
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
HT.Phong (9A5)
21 tháng 6 2023 lúc 7:37

Câu 2: 

a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)

\(=-2x^2+10x+3x-3+2x^2-13x\)

\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)

\(=0+0-3\)

\(=-3\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)

\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)

\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)

\(=0+0+0+0\)

\(=0\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

HT.Phong (9A5)
21 tháng 6 2023 lúc 7:52

Câu 4: 

a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)

\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)

\(A=-7\)

Thay \(x=-2\) vào biểu thức A ta có:

\(A=-7\)

Vậy giá trị của biểu thức A là -7 tại \(x=-2\)

b) \(B=x^5-15x^4+16x^3-29x^2+13x\)

\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(B=-x\)

Thay \(x=14\) vào biểu thức B ta được:

\(B=-14\)

Vậy giá trị của biểu thức B tại \(x=14\) là -14

HT.Phong (9A5)
21 tháng 6 2023 lúc 7:42

Câu 3:

a) \(5x^2-5x\left(x-5\right)=10x-35\)

\(\Leftrightarrow5x^2-5x^2+25x=10x-35\)

\(\Leftrightarrow25x=10x+35\)

\(\Leftrightarrow15x=35\)

\(\Leftrightarrow x=\dfrac{35}{15}=\dfrac{7}{3}\)

Vậy nghiệm của phương trình là \(x=\dfrac{7}{3}\)

b) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=4-x\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=4-x\)

\(\Leftrightarrow8x=4-x\)

\(\Leftrightarrow9x=4\)

\(x=\dfrac{4}{9}\)

Vậy nghiệm của phương trình là \(x=\dfrac{9}{4}\)

phamthiminhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 12:43

a)

ĐKXĐ: \(x\ne-4\)

Để A nguyên thì \(3x+21⋮x+4\)

\(\Leftrightarrow3x+12+9⋮x+4\)

mà \(3x+12⋮x+4\)

nên \(9⋮x+4\)

\(\Leftrightarrow x+4\inƯ\left(9\right)\)

\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)

\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)

Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)

b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)

Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)

\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)

mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)

nên \(7⋮2x-1\)

\(\Leftrightarrow2x-1\inƯ\left(7\right)\)

\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)

hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)

Vậy: \(x\in\left\{1;0;4;-3\right\}\)

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Trần Hà Lan
Xem chi tiết
Pham Van Hung
12 tháng 10 2018 lúc 12:33

Để thương có giá trị nguyên thì:

     \(3x^3+13x^2-7x+5⋮3x-2\)

\(\Rightarrow x^2\left(3x-2\right)+5x\left(3x-2\right)+3x-2+7⋮3x-2\)

\(\Rightarrow7⋮3x-2\)

\(\Rightarrow3x-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x\in\left\{-\frac{5}{3};\frac{1}{3};1;3\right\}\)

Mà \(x\in Z\Rightarrow x\in\left\{1;3\right\}\)

Đào Trang
Xem chi tiết
Trang Trang
Xem chi tiết
Trần Thu Uyên
20 tháng 7 2016 lúc 22:18

Ta có \(3x^3+13x^2-7x+5\)

\(3x^3-2x^2+15x^2-10x+3x-2+7\)

\(x^2\left(3x-2\right)+5x\left(3x-2\right)+\left(3x-2\right)+7\)

\(\left(3x-2\right)\left(x^2+5x+1\right)+7\)

=> biểu thức ban đầu = \(x^2+5x+1+\frac{7}{3x-2}\)

Vì x nguyên nên x2 + 5x +1 nguyên

=> Để biểu thức nguyên thì 3x - 2 phải là ước của 7

Sau đó bạn tự giải tiếp nhé

Chúc bạn làm bài tốt

Học sinh đang ôn thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:07

Bài 2: 

a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)

\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)

\(=\left(7x+5+3x-5\right)^2\)

\(=\left(10x\right)^2=100x^2\)

Thay x=-2 vào A, ta được:

\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)

b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)

\(=8x^3+y^3-8x\left(x^2-1\right)\)

\(=8x^3+y^3-8x^3+8x\)

\(=8x+y^3\)

Thay x=-2 và y=3 vào B, ta được:

\(B=-2\cdot8+3^3=-16+27=11\)

Học sinh đang ôn thi
22 tháng 7 2021 lúc 10:18

Ai help mk vs

Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:05

Bài 1: 

Ta có: \(A=x\left(4-x\right)\)

\(=4x-x^2\)

\(=-\left(x^2-4x\right)\)

\(=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\forall x\)

Dấu '=' xảy ra khi x=2

Vậy: \(A_{max}=4\) khi x=2