Tìm x , biết
a ) 16x : 4x = 16
b) ( 2x + 1 )3 = -64
c ) ( 3x - 1 )2 = 16
d ) 9x+1 = 32
Bài 8. Tìm x ϵ N biết:
a) x3=27
b) (2x-1)3=8
c) (x-2)2=16
d) (2x – 3)2=9
e) 2x+5=34:32
f) (3x-24).73=2.74
Bài 8. Tìm x ϵ N biết:
a) x3=27
b) (2x-1)3=8
c) (x-2)2=16
d) (2x – 3)2=9
e) 2x+5=34:32
f) (3x-24).73=2.74
Tìm STN x, biết:
a) (4x - 1)2 - 9 = 16
b) 2x + 2x + 3 = 144
c) 32x + 3 = 9x + 3
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
Câu 1: Phân tích thành nhân tử
a) (4x - 6y)^2 - (8xy -3)^2
b) 16x^2 - 49y^2
c) 36x^2 +60x + 25
d) (2x-y)(x-y) - (3y - 4x)^2 + (y-2x)(2y-3x)
Câu 2: Thu gọn đa thức
M = (3x - 4)(9x^2-12x+16)+ (6x-8)^2
Câu 3: Tìm x
a) (3x + 4)^3 = (9x - 8)(3x^2 - 8)
b)(4x-5)^3 = (2x+5)(16x^2-25)
Câu 4:
Cho biết tồn tại các số thực a,b khác 0 thỏa a+ 1/b = 1 và a^2 + 1/b^2 =3
Tính giá trị của biểu thức N = \(\frac{a^4b^4+a^2b^2+1}{b^4}\)
1.a) (4x - 6y)2 - (8xy - 5)2 = (4x - 6y - 8xy + 5)(4x - 6y + 8xy - 5)
b) 16x2 - 49y2 = (4x)2 - (7y)2 = (4x - 7y)(4x + 7y)
c) 36x2 + 60x + 25 = (6x)2 + 2.6x.5 + 52 = (6x + 5)2
d) (2x - y)(x - y) - (3y - 4x)2 + (y - 2x)(2y - 3x) = (y - 2x)(y - x) + (y - 2x)(2y - 3x) - (3y - 4x)2
= (y - 2x)[(y - x) + (2y - 3x)] - (3y - 4x)2 = (y - 2x)(3y - 4x) - (3y - 4x)2 = (3y - 4x)[(y - 2x) - (3y - 4x)] = 2(3y - 4x)(x - y)
2.M = (3x - 4)(9x2 - 12x + 16) + (6x - 8)2 = (3x - 4)[(3x)2 - 2.3x.4 + 42] + [2(3x - 4)]2 = (3x - 4)(3x - 4)2 + 4(3x - 4)2
= (3x - 4)2(3x - 4 + 4) = 3x(3x - 4)2
a) =(4x-6y-8xy+3)(4x-6y+8xy-3)
=[4x(1-2y)+3(1-2y)][4x(1+2y)-3(1+2y)]
=(4x+3)(4x-3)(1-2y)(1+2y)
Bai1: Thực hiện phép nhân:
a) 3xy(4xy^2-5x^2y-4xy)
b) (2x-1)(4x^2+2x+1)
c)(3x+2)(9x^2-6x+4)
Bài 2: Tìm x biết
a) (15x-5)(4x-1)+(3x-7)(1-16x)=81
b) (3x-2)(2x-3)-x(6x-4)=11
c) (2x^2-5)(x+1)-(2x-1)(x^2-3)-3x^2=6
d) (2x-1)(3x-1)-(2x-3)(9x-1)=0
Bài 3: a) Cho a+b+c=2P
Chứng minh rằng: 2bc+b^2+c^2-a^2=4P(P-a)
b) Cho M=(x-a)(x-b)+(x-b)(x-c)+(x-c)+(x-a)+x^2
Tính M theo a,b,c biết x=1/2a+1/2b+1/2v
em 2k6, đọc phần lí thuyết r lm, nên có lỗi j sai mong mn thông cảm
bài 1,
a, \(3xy\left(4xy^2-5x^2y-4xy\right)\)
= \(3xy.4xy^2-3xy.5x^2y-3xy.4xy\)
=\(12x^2y^3-15x^3y^2-12x^2y^2\)
b, \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
=\(\left(2x.4x^2+2x.2x+2x.1\right)-\left(1.4x^2+1.2x+1.1\right)\)
=\(8x^3+4x^2+2x-4x^2-2x-1\)
=\(8x^3+\left(4x^2-4x^2\right)+\left(2x-2x\right)-1\)
=\(8x^3-1\)
a)(2x+1)^2-(4x+1)(x-2)
b)(x+7)(x-4)=2(x-4)
c)(3x-1^2)=16
d)4x^2-3x-1=0
`a)` Thiếu đề.
`b)(x+7)(x-4)=2(x-4)`
`<=>(x-4)(x+7-2)=0`
`<=>(x-4)(x+5)=0`
`<=>[(x=4),(x=-5):}`
`c)(3x-1)^2=16?`
`<=>|3x-1|=4`
`<=>[(3x-1=4),(3x-1=-4):}<=>[(x=5/3),(x=-1):}`
`d)4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>(x-1)(4x+1)=0<=>[(x-1=0),(4x+1=0):}<=>[(x=1),(x=-1/4):}`
Chứng minh biểu thức ko phụ thuộc vào x:
a. A = (3x - 2)(9x² + 6x + 4) – 3(9x³ – 1)
b. B = (2x + y)(4x² – 2xy + y²) + (2x - y)(x² + 4xy + y^2) – 16x³.