1. so sánh \(\sqrt{a+b}
So sánh A và B
\(A=\dfrac{1}{\sqrt{1.2014}}+\dfrac{1}{\sqrt{2.2013}}+...+\dfrac{1}{\sqrt{2014.1}}\)
\(B=\dfrac{4028}{2015}\)
Áp dụng bất đẳng thức Cosi cho 2 số dương ta có:
\(\sqrt{1.2014} \leq \frac{1+2014}{2}=\frac{2015}{2} \\ \Rightarrow \frac{1}{\sqrt{1.2014}} \geq \frac{2}{2015}\)
Trong tổng A có 2014 phân thức, mỗi phân thức theo chứng minh tương tự, ta đều chỉ được nó lớn hơn hoặc bằng \( \frac{2}{2015}\)
Suy ra \(A\geq \frac{2.2014}{2015} = B\)
Dấu = xảy ra khi \(\Leftrightarrow\) \(1=2014\\ 2=2013\\ ...\\ 2014=1\) (vô lý)
Vậy A>B
Sử dụng BĐT: \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\) (với \(a\ne b\)) ta được:
\(A>\dfrac{2}{1+2014}+\dfrac{2}{2+2013}+...+\dfrac{2}{2014+1}\) (2014 số hạng)
\(A>\dfrac{2}{2015}+\dfrac{2}{2015}+...+\dfrac{2}{2015}=\dfrac{2.2014}{2015}\)
\(A>\dfrac{4028}{2015}\)
Vậy \(A>B\)
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
Câu 1 So sánh
a) 8 và 2+\(\sqrt{5}\)
b) 1+\(\sqrt{2}\) và 2
a: 6>căn 5
=>6+2>2+căn 5
=>8>2+căn 5
b: căn 2>1
=>1+căn 2>2
a) Ta có: \(8=6+2\)
Do: \(6>5\Leftrightarrow6>\sqrt{5}\)
\(\Leftrightarrow6+2>\sqrt{5}+2\)
\(\Leftrightarrow8>2+\sqrt{5}\)
b) Ta có: \(2=1+1=1+\sqrt{1}\)
Do: \(1< 2\Leftrightarrow\sqrt{1}< \sqrt{2}\)
\(\Leftrightarrow1< \sqrt{2}\Leftrightarrow1+1< 1+\sqrt{2}\)
\(\Leftrightarrow2< 1+\sqrt{2}\)
Hoạt động 3
a) Với mỗi số thực a, so sánh \(\sqrt {{a^2}} \) và \(\left| a \right|\); \(\sqrt[3]{{{a^3}}}\) và a
b) Cho a, b là hai số thực dương. So sánh: \(\sqrt {a.b} \) và \(\sqrt a .\sqrt b \)
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
So sánh A và B biết :
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
Ta có: \(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{120}+11\)
=10
Ta có: \(B=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{35}}\)
\(=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+...+\dfrac{2}{\sqrt{35}+\sqrt{35}}\)
\(\Leftrightarrow B< 2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{35}+\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}-...-\dfrac{1}{\sqrt{35}}+\dfrac{1}{\sqrt{36}}\right)\)
\(\Leftrightarrow B< 2\cdot\left(-\dfrac{1}{1}+\dfrac{1}{6}\right)\)
\(\Leftrightarrow B< -\dfrac{5}{3}< 10=A\)
Cho \(A=\sqrt{625}-\frac{1}{\sqrt{5}};B=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)
Hãy so sánh A và B
Cho \(A=\sqrt{625}-\dfrac{1}{\sqrt{5}};B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1\)
Hãy so sánh A và B
\(A=\sqrt{625}-\dfrac{1}{\sqrt{5}}=25-\dfrac{1}{\sqrt{5}}\)
\(B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1=24-\dfrac{1}{\sqrt{6}}+1=25-\dfrac{1}{\sqrt{6}}.\)
Vì \(\sqrt{5}< \sqrt{6}\) nên \(\dfrac{1}{\sqrt{5}}>\dfrac{1}{\sqrt{6}}.\)
Từ (1), (2) và (3) suy ra \(A< B.\)
A=\(\sqrt{625}\)−\(\dfrac{1}{\sqrt{5}}\)
⇒A= 25-\(\dfrac{1}{\sqrt{5}}\)
B =\(\sqrt{576}\) - \(\dfrac{1}{\sqrt{6}}+1\)
⇒B = 24-\(\dfrac{1}{\sqrt{6}}+1\)
Hay: B = (24+1)-\(\dfrac{1}{\sqrt{6}}\)
⇒ B=25-\(\dfrac{1}{\sqrt{6}}\)
Vì: 25-\(\dfrac{1}{\sqrt{5}}\) > 25-\(\dfrac{1}{\sqrt{6}}\)
Vậy: A > B
B= 1:(\(\dfrac{x+2}{x\sqrt{x}-1} + \dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\))
a) Rút gọn B
b) So sánh B với 3
a) ĐKXĐ: \(x>0,x\ne1\)
\(B=1:\dfrac{\left(x+2\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\left(x-1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-\sqrt{x}}\)
\(=\dfrac{\left(x-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b) \(B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}}\)
Áp dụng BĐT Cauchy cho 2 só dương:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}.1}{\sqrt{x}}}=2\)
\(\Rightarrow B=1+\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge1+2=3\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Cho biểu thức: B= \(\left(\frac{1}{a-\:\sqrt{a}}+\frac{1}{\sqrt{a-1}}\right):\frac{\sqrt{a}+1}{A-2\sqrt{a}+1}\)
a, Rút gọn B
b, So sánh B với 1
ĐKXĐ : \(a>0,a\ne1\)
a) \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(B=1-\frac{1}{\sqrt{a}}< 1\)